1
|
Mei P, Zhang Y, Ai B, Hong L, Zhou C, Zhang W. Versatile Peroxide Route-Based Kinetics-Controlled Coating Method to Construct Uniform Alkali Metal-Containing Fast Ionic Conductor Nanoshells. J Am Chem Soc 2024; 146:28677-28684. [PMID: 39382038 DOI: 10.1021/jacs.4c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Constructing a uniform coating of alkali metal-containing fast ionic conductors is crucial for realizing multifunctional responses and functionalities. However, the uncontrolled coprecipitation of alkali and transition metal ions, stemming from their significant difference in reactivity, poses a significant challenge in pursuing homogeneous and continuous nanoshells for fast ionic conductors. Here, we report a versatile peroxide-based kinetics-controlled coating approach for constructing alkali metal-containing fast ionic conductors using LiNbO3 as a proof-of-concept. Hydrogen peroxide (H2O2) was employed as an innovative precipitant, and the deposition kinetics could be precisely tuned by adjusting the pH value of the solution to facilitate the coprecipitation of the transition metal and ammonium/hydrogen ions. The latter could subsequently be exchanged with lithium ions and transformed into uniform LiNbO3 nanoshells after low-temperature annealing (280 °C). The obtained LiNbO3 coating layers are continuous, thickness-tunable, and exhibit significantly higher ionic conductivity, 2 orders of magnitude greater than conventional counterparts. This enhancement enables solid-state batteries with excellent cycling and rate performance. Furthermore, this method is extendable to various alkali metal-based (Li, Na, and K) fast ionic conductor nanoshells, injecting new vitality into the advanced applications of fast ionic conductors in various battery systems.
Collapse
Affiliation(s)
- Pan Mei
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuan Zhang
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bing Ai
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Luxi Hong
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chenhuan Zhou
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wei Zhang
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
2
|
Liu C, Roters F, Raabe D. Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries. Nat Commun 2024; 15:7970. [PMID: 39266556 PMCID: PMC11393410 DOI: 10.1038/s41467-024-52123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024] Open
Abstract
Solid-state Li-ion batteries, based on Ni-rich oxide cathodes and Li-metal anodes, can theoretically reach a high specific energy of 393 Wh kg-1 and hold promise for electrochemical storage. However, Li intercalation-induced dimensional changes can lead to crystal defect formation in these cathodes, and contact mechanics problems between cathode and solid electrolyte. Understanding the interplay between cathode microstructure, operating conditions, micromechanics of battery materials, and capacity decay remains a challenge. Here, we present a microstructure-sensitive chemo-mechanical model to study the impact of grain-level chemo-mechanics on the degradation of composite cathodes. We reveal that crystalline anisotropy, state-of-charge-dependent Li diffusion rates, and lattice dimension changes drive dislocation formation in cathodes and contact loss at the cathode/electrolyte interface. These dislocations induce large lattice strain and trigger oxygen loss and structural degradation preferentially near the surface area of cathode particles. Moreover, contact loss is caused by the micromechanics resulting from the crystalline anisotropy of cathodes and the mechanical properties of solid electrolytes, not just operating conditions. These findings highlight the significance of grain-level cathode microstructures in causing cracking, formation of crystal defects, and chemo-mechanical degradation of solid-state batteries.
Collapse
Affiliation(s)
- Chuanlai Liu
- Max Planck Institute for Sustainable Materials, Max-Planck-Str. 1, Düsseldorf, 40237, Germany.
| | - Franz Roters
- Max Planck Institute for Sustainable Materials, Max-Planck-Str. 1, Düsseldorf, 40237, Germany
| | - Dierk Raabe
- Max Planck Institute for Sustainable Materials, Max-Planck-Str. 1, Düsseldorf, 40237, Germany.
| |
Collapse
|
3
|
Qi M, Wang L, Huang X, Ma M, He X. Surface Engineering of Cathode Materials: Enhancing the High Performance of Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402443. [PMID: 38845082 DOI: 10.1002/smll.202402443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Indexed: 10/04/2024]
Abstract
The development and application of lithium-ion batteries present a dual global prospect of opportunity and challenge. With conventional energy sources facing reserve shortages and environmental issues, lithium-ion batteries have emerged as a transformative technology over the past decade, owing to their superior properties. They are poised for exponential growth in the realms of electric vehicles and energy storage. The cathode, a vital component of lithium-ion batteries, undergoes chemical and electrochemical reactions at its surface that directly impact the battery's energy density, lifespan, power output, and safety. Despite the increasing energy density of lithium-ion batteries, their cathodes commonly encounter surface-side reactions with the electrolyte and exhibit low conductivity, which hinder their utility in high-power and energy-storage applications. Surface engineering has emerged as a compelling strategy to address these challenges. This paper meticulously examines the principles and progress of surface engineering for cathode materials, providing insights into its potential advancements and charting its development trajectory for practical implementation.
Collapse
Affiliation(s)
- Mengyu Qi
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaolong Huang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingguo Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Liu Y, Yu T, Xu S, Sun Y, Li J, Xu X, Li H, Zhang M, Tian J, Hou R, Rao Y, Zhou H, Guo S. Constructing An Oxyhalide Interface for 4.8 V-Tolerant High-Nickel Cathodes in All-Solid-State Lithium-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202403617. [PMID: 38819860 DOI: 10.1002/anie.202403617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
All-solid-state lithium batteries (ASSBs) have received increasing attentions as one promising candidate for the next-generation energy storage devices. Among various solid electrolytes, sulfide-based ASSBs combined with layered oxide cathodes have emerged due to the high energy density and safety performance, even at high-voltage conditions. However, the interface compatibility issues remain to be solved at the interface between the oxide cathode and sulfide electrolyte. To circumvent this issue, we propose a simple but effective approach to magic the adverse surface alkali into a uniform oxyhalide coating on LiNi0.8Co0.1Mn0.1O2 (NCM811) via a controllable gas-solid reaction. Due to the enhancement of the close contact at interface, the ASSBs exhibit improved kinetic performance across a broad temperature range, especially at the freezing point. Besides, owing to the high-voltage tolerance of the protective layer, ASSBs demonstrate excellent cyclic stability under high cutoff voltages (500 cycles~94.0 % at 4.5 V, 200 cycles~80.4 % at 4.8 V). This work provides insights into using a high voltage stable oxyhalide coating strategy to enhance the development of high energy density ASSBs.
Collapse
Affiliation(s)
- Yuankai Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Tao Yu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Sheng Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Yu Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Jingchang Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Xiangqun Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Haoyu Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Min Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Jiamin Tian
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Ruilin Hou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Yuan Rao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China
| |
Collapse
|
5
|
Wang C, Jing Y, Zhu D, Xin HL. Atomic Origin of Chemomechanical Failure of Layered Cathodes in All-Solid-State Batteries. J Am Chem Soc 2024; 146:17712-17718. [PMID: 38874441 DOI: 10.1021/jacs.4c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The ever-increasing demand for safety has thrust all-solid-state batteries (ASSBs) into the forefront of next-generation energy storage technologies. However, the atomic mechanisms underlying the failure of layered cathodes in ASSBs, as opposed to their counterparts in liquid electrolyte-based lithium-ion batteries (LIBs), have remained elusive. Here, leveraging artificial intelligence-enhanced super-resolution electron microscopy, we unravel the atomic origins dictating the chemomechanical degradation of technologically crucial high-Ni layered oxide cathodes in ASSBs. We reveal that the coupling of surface frustration and interlayer-shear-induced phase transformation exacerbates the chemomechanical breakdown of layered cathodes. Surface frustration, a phenomenon previously unobserved in liquid electrolyte-based LIBs, emerges through electrochemical processes involving surface nanocrystallization coupled with rock salt transformation. Simultaneously, delithiation-induced interlayer shear yields the formation of chunky O1 phases and intricate interfaces/transition motifs, distinct from scenarios observed in liquid electrolyte-based LIBs. Bridging the knowledge gap between the failure mechanisms of layered cathodes in solid-state electrolytes and conventional liquid electrolytes, our study provides unprecedented atomic-scale insights into the degradation pathways of layered cathodes in ASSBs.
Collapse
Affiliation(s)
- Chunyang Wang
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yaqi Jing
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Dong Zhu
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
Wang S, Liu S, Chen W, Hu Y, Chen D, He M, Zhou M, Lei T, Zhang Y, Xiong J. Designing Reliable Cathode System for High-Performance Inorganic Solid-State Pouch Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401889. [PMID: 38554399 PMCID: PMC11187921 DOI: 10.1002/advs.202401889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Indexed: 04/01/2024]
Abstract
All-solid-state batteries (ASSBs) based on inorganic solid electrolytes fascinate a large body of researchers in terms of overcoming the inferior energy density and safety issues of existing lithium-ion batteries. To date, the cathode designs in the ASSBs achieve remarkable achievements, adding the urgency of scaling up the battery system toward inorganic solid-state pouch cell configuration for the application market. Herein, the recent developments of cathode materials and the design considerations for their application in the pouch cell format are reviewed to straighten out the roadmap of ASSBs. Specifically, the intercalation compounds and the conversion materials with conversion chemistries are highlighted and discussed as two potentially valuable material types. This review focuses on the basic electrochemical mechanisms, mechanical contact issues, and sheet-type structure in inorganic solid-state pouch cells with corresponding perspectives, thus guiding the future research direction. Finally, the benchmarks for manufacturing inorganic solid-state pouch cells to meet practical high energy density targets are provided in this review for the development of commercially viable products.
Collapse
Affiliation(s)
- Shuying Wang
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu610054China
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Sheng Liu
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Wei Chen
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yin Hu
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Dongjiang Chen
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Miao He
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Mingjie Zhou
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Tianyu Lei
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yagang Zhang
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
7
|
Lu J, Xu C, Dose W, Dey S, Wang X, Wu Y, Li D, Ci L. Microstructures of layered Ni-rich cathodes for lithium-ion batteries. Chem Soc Rev 2024; 53:4707-4740. [PMID: 38536022 DOI: 10.1039/d3cs00741c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Millions of electric vehicles (EVs) on the road are powered by lithium-ion batteries (LIBs) based on nickel-rich layered oxide (NRLO) cathodes, and they suffer from a limited driving range and safety concerns. Increasing the Ni content is a key way to boost the energy densities of LIBs and alleviate the EV range anxiety, which are, however, compromised by the rapid performance fading. One unique challenge lies in the worsening of the microstructural stability with a rising Ni-content in the cathode. In this review, we focus on the latest advances in the understanding of NLRO microstructures, particularly the microstructural degradation mechanisms, state-of-the-art stabilization strategies, and advanced characterization methods. We first elaborate on the fundamental mechanisms underlying the microstructural failures of NRLOs, including anisotropic lattice evolution, microcracking, and surface degradation, as a result of which other degradation processes, such as electrolyte decomposition and transition metal dissolution, can be severely aggravated. Afterwards, we discuss representative stabilization strategies, including the surface treatment and construction of radial concentration gradients in polycrystalline secondary particles, the fabrication of rod-shaped primary particles, and the development of single-crystal NRLO cathodes. We then introduce emerging microstructural characterization techniques, especially for identification of the particle orientation, dynamic changes, and elemental distributions in NRLO microstructures. Finally, we provide perspectives on the remaining challenges and opportunities for the development of stable NRLO cathodes for the zero-carbon future.
Collapse
Affiliation(s)
- Jingyu Lu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Chao Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wesley Dose
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Sunita Dey
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Xihao Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yehui Wu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Deping Li
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Lijie Ci
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
8
|
Shao Y, Xu J, Amardeep A, Xia Y, Meng X, Liu J, Liao S. Lithium-Ion Conductive Coatings for Nickel-Rich Cathodes for Lithium-Ion Batteries. SMALL METHODS 2024:e2400256. [PMID: 38708816 DOI: 10.1002/smtd.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Indexed: 05/07/2024]
Abstract
Nickel (Ni)-rich cathodes are among the most promising cathode materials of lithium batteries, ascribed to their high-power density, cost-effectiveness, and eco-friendliness, having extensive applications from portable electronics to electric vehicles and national grids. They can boost the wide implementation of renewable energies and thereby contribute to carbon neutrality and achieving sustainable prosperity in the modern society. Nevertheless, these cathodes suffer from significant technical challenges, leading to poor cycling performance and safety risks. The underlying mechanisms are residual lithium compounds, uncontrolled lithium/nickel cation mixing, severe interface reactions, irreversible phase transition, anisotropic internal stress, and microcracking. Notably, they have become more serious with increasing Ni content and have been impeding the widespread commercial applications of Ni-rich cathodes. Various strategies have been developed to tackle these issues, such as elemental doping, adding electrolyte additives, and surface coating. Surface coating has been a facile and effective route and has been investigated widely among them. Of numerous surface coating materials, have recently emerged as highly attractive options due to their high lithium-ion conductivity. In this review, a thorough and comprehensive review of lithium-ion conductive coatings (LCCs) are made, aimed at probing their underlying mechanisms for improved cell performance and stimulating new research efforts.
Collapse
Affiliation(s)
- Yijia Shao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & the Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
- School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Jia Xu
- School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Amardeep Amardeep
- School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Yakang Xia
- School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Xiangbo Meng
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jian Liu
- School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & the Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
9
|
Kong WJ, Zhao CZ, Sun S, Shen L, Huang XY, Xu P, Lu Y, Huang WZ, Huang JQ, Zhang Q. From Liquid to Solid-State Batteries: Li-Rich Mn-Based Layered Oxides as Emerging Cathodes with High Energy Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310738. [PMID: 38054396 DOI: 10.1002/adma.202310738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Li-rich Mn-based (LRMO) cathode materials have attracted widespread attention due to their high specific capacity, energy density, and cost-effectiveness. However, challenges such as poor cycling stability, voltage deca,y and oxygen escape limit their commercial application in liquid Li-ion batteries. Consequently, there is a growing interest in the development of safe and resilient all-solid-state batteries (ASSBs), driven by their remarkable safety features and superior energy density. ASSBs based on LRMO cathodes offer distinct advantages over conventional liquid Li-ion batteries, including long-term cycle stability, thermal and wider electrochemical windows stability, as well as the prevention of transition metal dissolution. This review aims to recapitulate the challenges and fundamental understanding associated with the application of LRMO cathodes in ASSBs. Additionally, it proposes the mechanisms of interfacial mechanical and chemical instability, introduces noteworthy strategies to enhance oxygen redox reversibility, enhances high-voltage interfacial stability, and optimizes Li+ transfer kinetics. Furthermore, it suggests potential research approaches to facilitate the large-scale implementation of LRMO cathodes in ASSBs.
Collapse
Affiliation(s)
- Wei-Jin Kong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chen-Zi Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuo Sun
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- School of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liang Shen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xue-Yan Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Pan Xu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Lu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wen-Ze Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jia-Qi Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Yan M, Wang C, Fan M, Zhang Y, Xin S, Yue J, Zeng X, Liang J, Song Y, Yin Y, Wen R, Liu Z, Wan L, Guo Y. In Situ Derived Mixed Ion/Electron Conducting Layer on Top of a Functional Separator for High‐Performance, Dendrite‐Free Rechargeable Lithium‐Metal Batteries. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202301638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Indexed: 10/10/2024]
Abstract
AbstractRechargeable lithium‐metal batteries (RLBs), which employ the Li‐metal anode to acquire notably boosted specific energy at cell level, represent the “Holy Grail” for “beyond Li‐ion” electrochemical energy storage technology. Currently, the practical use of RLBs is impeded by poor cycling and safety performance, which are derived from high chemical reactivity of metallic Li and uncontrollable formation and propagation of metal dendrites during repeated Li plating/stripping. In this study, a new strategy is demonstrated to stabilize the anode electrochemistry of RLBs by applying a Mg3N2‐decorated functional separator onto the Li‐metal surface. An in situ conversion‐alloying reaction occurring at Li‐separator interface assists formation of a mixed ion/electron conducting layer that consists mainly of Li3N and Li‐Mg solid‐solution. The inorganic interlayer effectively suppresses parasitic reactions at Li‐electrolyte interface while simultaneously homogenizes Li+/e‐ flux across the interface and therefore, contributes to dendrite‐free operation of Li‐metal anode. A Li||LiNi0.6Co0.2Mn0.2O2 battery based on the functional separator delivers a reversible capacity of 129 mAh g‐1 after 600 cycles at 0.5 C, which corresponds to a capacity retention of 75.9%. The preparation of functional separator is scalable and adaptive to battery manufacture, which brings new opportunities to realize high‐energy RLBs with long cycle life and improved safety.
Collapse
Affiliation(s)
- Min Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials School of Materials Science and Engineering Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Chen‐Yang Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials School of Materials Science and Engineering Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Min Fan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Yuying Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Sen Xin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Junpei Yue
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Xian‐Xiang Zeng
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Jia‐Yan Liang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Yue‐Xian Song
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Ya‐Xia Yin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Rui Wen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhitian Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials School of Materials Science and Engineering Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Li‐Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yu‐Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
11
|
Li X, Sun X, Xiao B, Wang D, Liang J. Inorganic Polysulfide Chemistries for Better Energy Storage Systems. Acc Chem Res 2023; 56:3547-3557. [PMID: 38060813 DOI: 10.1021/acs.accounts.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
ConspectusSulfur-based cathode materials have become a research hot spot as one of the most promising candidates for next-generation, high-energy lithium batteries. However, the insulating nature of elemental sulfur or organosulfides has become the biggest challenge that leads to dramatic degradation and hinders their practical application. The disadvantage is more obvious for all-solid-state battery systems, which require both high electronic and ionic migration at the same sites to realize a complete electrochemical reaction. In addition to adding conductive components into the cathode composites, another effective way to realize high-reversibility sulfur-based cathodes is by optimizing the inherent nature of sulfur-based materials to make them "conductive". Inorganic polysulfide materials including polysulfide molecules, selenium-sulfur solid solutions, and (lithium) metal polysulfides are promising, as they have different structures that can make them intrinsically conductive or becoming conductive during lithiation. They all contain at least one -S-S- bridged bond, which is the intrinsic structural characteristic and the source of the chemical properties of these polysulfide compounds. For example, by balancing the conductivity and reversible capacity, researchers in the US National Aeronautics and Space Administration (NASA) have shown that 500 Wh/kg solid-state Li-Se/S batteries can power cars and even electric aircraft.We have long been focusing on the inorganic polysulfide component, reported the selenium-sulfur solid solutions, the first sulfur-rich phosphorus polysulfide molecules, and followed the research of metal polysulfide components. The proposed Account summarizes our current knowledge of the fundamental aspects of inorganic polysulfides in energy storage systems based on state-of-the-art publications on this topic. Both fast electron and ion migrations within the electrode materials are vital to achieving high-energy batteries. We begin by illustrating effective approaches to enhance the electronic/ionic conductivity of sulfur-based electrode materials. We then present some basic observations and properties (especially the intrinsic high conductivities) of the inorganic polysulfide electrode materials. The key chemical and structural factors dictating their conductive and electrochemical behaviors will be discussed. Finally, we show the advantages and broad applications of inorganic polysulfides in energy storage areas. The proposed Account will provide an insightful perspective on the current knowledge of inorganic polysulfide materials, as well as their future research directions and development potential, serving as a keynote reference for researchers in the field of energy storage.
Collapse
Affiliation(s)
- Xiaona Li
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, China
| | - Xueliang Sun
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, China
| | - Biwei Xiao
- Solid State Batteries Research Center, GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan, Guangdong, 528051, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Deping Wang
- China FAW Corporation Limited, Changchun 130013, China
| | - Jianwen Liang
- Solid State Batteries Research Center, GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan, Guangdong, 528051, China
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| |
Collapse
|
12
|
Zhang G, Li M, Ye Z, Chen T, Cao J, Yang H, Ma C, Jia Z, Xie J, Cui N, Xiong Y. Lithium Iron Phosphate and Layered Transition Metal Oxide Cathode for Power Batteries: Attenuation Mechanisms and Modification Strategies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5769. [PMID: 37687462 PMCID: PMC10488970 DOI: 10.3390/ma16175769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
In the past decade, in the context of the carbon peaking and carbon neutrality era, the rapid development of new energy vehicles has led to higher requirements for the performance of strike forces such as battery cycle life, energy density, and cost. Lithium-ion batteries have gradually become mainstream in electric vehicle power batteries due to their excellent energy density, rate performance, and cycle life. At present, the most widely used cathode materials for power batteries are lithium iron phosphate (LFP) and LixNiyMnzCo1-y-zO2 cathodes (NCM). However, these materials exhibit bottlenecks that limit the improvement and promotion of power battery performance. In this review, the performance characteristics, cycle life attenuation mechanism (including structural damage, gas generation, and active lithium loss, etc.), and improvement methods (including surface coating and element-doping modification) of LFP and NCM batteries are reviewed. Finally, the development prospects of this field are proposed.
Collapse
Affiliation(s)
- Guanhua Zhang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710100, China
| | - Min Li
- School of Management, Northwestern Polytechnical University, Xi’an 710100, China
| | - Zimu Ye
- School of Mechanics Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710100, China (C.M.)
| | - Tieren Chen
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710102, China
| | - Jiawei Cao
- School of Mechanics Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710100, China (C.M.)
| | - Hongbo Yang
- School of Mechanics Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710100, China (C.M.)
| | - Chengbo Ma
- School of Mechanics Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710100, China (C.M.)
| | - Zhenggang Jia
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiwei Xie
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ning Cui
- School of Life Science, Northwestern Polytechnical University, Xi’an 710100, China
| | - Yueping Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
13
|
Meng X, Wang J, Li L. Layered-Oxide Cathode Materials for Fast-Charging Lithium-Ion Batteries: A Review. Molecules 2023; 28:molecules28104007. [PMID: 37241748 DOI: 10.3390/molecules28104007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Layered oxides are considered prospective state-of-the-art cathode materials for fast-charging lithium-ion batteries (LIBs) owning to their economic effectiveness, high energy density, and environmentally friendly nature. Nonetheless, layered oxides experience thermal runaway, capacity decay, and voltage decay during fast charging. This article summarizes various modifications recently implemented in the fast charging of LIB cathode materials, including component improvement, morphology control, ion doping, surface coating, and composite structure. The development direction of layered-oxide cathodes is summarized based on research progress. Further, possible strategies and future development directions of layered-oxide cathodes to improve fast-charging performance are proposed.
Collapse
Affiliation(s)
- Xin Meng
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jiale Wang
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|