1
|
Zhang F, Cui X, Yang K, Guo R, Zhu L, Zhao W, Liu Z, Liu B. Activin A inhibits the migration of human lung adenocarcinoma A549 cells induced by EGF. Int Immunopharmacol 2024; 142:113170. [PMID: 39288626 DOI: 10.1016/j.intimp.2024.113170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Activin A, a member of the transforming growth factor β (TGF-β) superfamily, is involved in tumorigenesis and tumor progression. However, it remains unclear whether activin A can affect the migration of lung adenocarcinoma (LUAD) cells. In this study, the results of differentially expressed genes (DEGs) identification revealed that lung adenocarcinoma tissues exhibited lower expression of activin βA mRNA, but higher expression of epidermal growth factor (EGF) and MMP9 mRNA compared to nontumor tissues. Moreover, we found that activin A inhibited human LUAD A549 cell proliferation promoted by EGF. Additionally, EGF induced A549 cell migration in microfluidic device, while activin A attenuated EGF actions. Simultaneously, EGF increased the levels of migration-related proteins, but activin A played the opposite role. Furthermore, the study revealed that EGF upregulated the ratio of p-ERK/ERK in A549 cells, which was weakened by activin A, and A549 cell migration regulated by activin A was not related to calcium signaling. In addition, the inhibitory effect of activin A on EGF-induced A549 cell migration was attenuated by the ERK inhibitor FR180204. These findings demonstrate that activin A effectively hinders the migration of A549 cells induced by EGF through ERK1/2 signaling, suggesting that targeting activin A may hold promise in the treatment of EGF-dependent LUAD growth and metastasis.
Collapse
Affiliation(s)
- Fenglin Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China; Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin Province, Jilin Province 130021, China
| | - Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| | - Rui Guo
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Linjing Zhu
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Wei Zhao
- Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin Province, Jilin Province 130021, China; Department of Internal Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China; Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin Province, Jilin Province 130021, China
| | - Boyang Liu
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China; Department of Scientific Research, Jilin Jianzhu University, Changchun, Jilin Province 130118, China.
| |
Collapse
|
2
|
Sinn K, Elbeialy A, Mosleh B, Aigner C, Schelch K, Laszlo V, Dome B, Hoda MA, Grusch M. High circulating activin A plasma levels are associated with tumour stage and poor survival in treatment-naive lung squamous cell cancer patients. Transl Oncol 2024; 51:102153. [PMID: 39405924 PMCID: PMC11525229 DOI: 10.1016/j.tranon.2024.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVES Lung squamous cell carcinoma (LUSC) is associated with a poor prognosis and a lack of specific treatment options. The dysregulation of activin A (ActA) has been reported in various malignancies. Herein, we investigated the diagnostic and prognostic significance of ActA in LUSC. MATERIALS AND METHODS ActA concentrations were measured using ELISA in plasma samples of 128 LUSC patients (stage I-IV) and 73 controls, and correlated those values with clinicopathological parameters and survival. RESULTS ActA plasma levels were significantly higher in therapy-naive LUSC patients compared to controls (444.1 ± 310.9 pg/mL vs 338.9 ± 145.5 pg/mL, p = 0.010). ActA levels significantly correlated with advanced stage as well as with T and N factors. High circulating ActA levels were significantly increased in metastatic disease patients compared to M0 disease. Further, patients with ActA levels above a computationally established optimal cut-off value of 443.0 pg/mL had a significantly worse median overall (OS, 17.63 vs 64.77 months, HR 0.391, 95 % CI 0.200-0.762, p < 0.001) and median disease-/progression-free survival (DFS/PFS; 11.57 vs 30.20 months, HR 0.502, 95 % CI 0.248-1.019, p = 0.020). Multivariate analysis revealed that high ActA levels were an independent prognostic factor for shorter OS (p = 0.001) and DFS/PFS (p = 0.018). A newly developed score combining CRP and ActA levels was also an independent prognostic factor for OS and DFS/PFS. CONCLUSION Measurement of circulating ActA levels may help identify advanced-stage LUSC patients, and this value could serve as a prognostic parameter in LUSC. Thus, ActA may be a novel blood-based biomarker for identifying LUSC patients with distant metastasis.
Collapse
Affiliation(s)
- Katharina Sinn
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Ahmed Elbeialy
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Berta Mosleh
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Karin Schelch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; Department of Tumour Biology, National Korányi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary; Department of Translational Medicine, Lund University, Lund, Sweden
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Grusch
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Zhang W, Zhu L, Fang F, Zhang F, Wang R, Yang K, Liu Y, Cui X. Activin A plays an essential role in migration and proliferation of hepatic stellate cells via Smad3 and calcium signaling. Sci Rep 2024; 14:20419. [PMID: 39223291 PMCID: PMC11369249 DOI: 10.1038/s41598-024-71304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Activin A and hepatic stellate cells (HSCs) are involved in tissue repair and fibrosis in liver injury. This study investigated the impact of activin A on HSC activation and migration. A microfluidic D4-chip was used for examining the cell migration of mouse hepatic stellate cell line MHSteC. The analysis of differentially expressed genes revealed that activin βA (Inhba), activin receptor type 1A (Acvr1a) and type 2A (Acvr2a) mRNAs were more significantly expressed in human HSCs than in the hepatocytes. Moreover, activin A promoted MHSteC proliferation and induced MHSteC migration. Furthermore, the MHSteCs treated with activin A exhibited increased levels of migration-related proteins, N-cadherin, Vimentin, α-SMA, MMP2 and MMP9, but a decreased level of E-cadherin. Additionally, activin A treatment significantly increased the p-Smad3 levels and p-Smad3/Smad3 ratio in the MHSteCs, and the Smad3 inhibitor SIS3 attenuated activin A-induced MHSteC proliferation and migration. Simultaneously, activin A increased the calcium levels in the MHSteCs, and the migratory effects of activin A on MHSteCs were weakened by the intracellular calcium ion-chelating agent BAPTA-AM. These data indicate that activin A can promote MHSteC activation and migration through the canonical Smad3 signaling and calcium signaling.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Linjing Zhu
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Fang Fang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Fenglin Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Runnan Wang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
4
|
Li W, Yuan Q, Li M, He X, Shen C, Luo Y, Tai Y, Li Y, Deng Z, Luo Y. Research advances on signaling pathways regulating the polarization of tumor-associated macrophages in lung cancer microenvironment. Front Immunol 2024; 15:1452078. [PMID: 39144141 PMCID: PMC11321980 DOI: 10.3389/fimmu.2024.1452078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer (LC) is one of the most common cancer worldwide. Tumor-associated macrophages (TAMs) are important component of the tumor microenvironment (TME) and are closely related to the stages of tumor occurrence, development, and metastasis. Macrophages are plastic and can differentiate into different phenotypes and functions under the influence of different signaling pathways in TME. The classically activated (M1-like) and alternatively activated (M2-like) represent the two polarization states of macrophages. M1 macrophages exhibit anti-tumor functions, while M2 macrophages are considered to support tumor cell survival and metastasis. Macrophage polarization involves complex signaling pathways, and blocking or regulating these signaling pathways to enhance macrophages' anti-tumor effects has become a research hotspot in recent years. At the same time, there have been new discoveries regarding the modulation of TAMs towards an anti-tumor phenotype by synthetic and natural drug components. Nanotechnology can better achieve combination therapy and targeted delivery of drugs, maximizing the efficacy of the drugs while minimizing side effects. Up to now, nanomedicines targeting the delivery of various active substances for reprogramming TAMs have made significant progress. In this review, we primarily provided a comprehensive overview of the signaling crosstalk between TAMs and various cells in the LC microenvironment. Additionally, the latest advancements in novel drugs and nano-based drug delivery systems (NDDSs) that target macrophages were also reviewed. Finally, we discussed the prospects of macrophages as therapeutic targets and the barriers to clinical translation.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Quan Yuan
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Mei Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu He
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yurui Luo
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunze Tai
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Deng
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Yao Luo
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Licari E, Cricrì G, Mauri M, Raimondo F, Dioni L, Favero C, Giussani A, Starace R, Nucera S, Biondi A, Piazza R, Bollati V, Dander E, D'Amico G. ActivinA modulates B-acute lymphoblastic leukaemia cell communication and survival by inducing extracellular vesicles production. Sci Rep 2024; 14:16083. [PMID: 38992199 PMCID: PMC11239915 DOI: 10.1038/s41598-024-66779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Extracellular vesicles (EVs) are a new mechanism of cellular communication, by delivering their cargo into target cells to modulate molecular pathways. EV-mediated crosstalk contributes to tumor survival and resistance to cellular stress. However, the role of EVs in B-cell Acute Lymphoblastic Leukaemia (B-ALL) awaits to be thoroughly investigated. We recently published that ActivinA increases intracellular calcium levels and promotes actin polymerization in B-ALL cells. These biological processes guide cytoskeleton reorganization, which is a crucial event for EV secretion and internalization. Hence, we investigated the role of EVs in the context of B-ALL and the impact of ActivinA on this phenomenon. We demonstrated that leukemic cells release a higher number of EVs in response to ActivinA treatment, and they can actively uptake EVs released by other B-ALL cells. Under culture-induced stress conditions, EVs coculture promoted cell survival in B-ALL cells in a dose-dependent manner. Direct stimulation of B-ALL cells with ActivinA or with EVs isolated from ActivinA-stimulated cells was even more effective in preventing cell death. This effect can be possibly ascribed to the increase of vesiculation and modifications of EV-associated microRNAs induced by ActivinA. These data demonstrate that ActivinA boosts EV-mediated B-ALL crosstalk, improving leukemia survival in stress conditions.
Collapse
Affiliation(s)
- Eugenia Licari
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Giulia Cricrì
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Francesca Raimondo
- Clinical Proteomics and Metabolomic Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Dioni
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Favero
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alice Giussani
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Rita Starace
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Silvia Nucera
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Andrea Biondi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- CRC, Center for Environmental Health, University of Milan, Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Erica Dander
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy
| | - Giovanna D'Amico
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, 20900, Monza, Italy.
| |
Collapse
|
6
|
Matsui T, Taniguchi S, Ishii M. Function of alveolar macrophages in lung cancer microenvironment. Inflamm Regen 2024; 44:23. [PMID: 38720352 PMCID: PMC11077793 DOI: 10.1186/s41232-024-00335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Cancer tissues contain a wide variety of immune cells that play critical roles in suppressing or promoting tumor progression. Macrophages are one of the most predominant populations in the tumor microenvironment and are composed of two classes: infiltrating macrophages from the bone marrow and tissue-resident macrophages (TRMs). This review aimed to outline the function of TRMs in the tumor microenvironment, focusing on lung cancer. REVIEW Although the functions of infiltrating macrophages and tumor-associated macrophages have been intensively analyzed, a comprehensive understanding of TRM function in cancer is relatively insufficient because it differs depending on the tissue and organ. Alveolar macrophages (AMs), one of the most important TRMs in the lungs, are replenished in situ, independent of hematopoietic stem cells in the bone marrow, and are abundant in lung cancer tissue. Recently, we reported that AMs support cancer cell proliferation and contribute to unfavorable outcomes. CONCLUSION In this review, we introduce the functions of AMs in lung cancer and their underlying molecular mechanisms. A thorough understanding of the functions of AMs in lung cancer will lead to improved treatment outcomes.
Collapse
Affiliation(s)
- Takahiro Matsui
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Seiji Taniguchi
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Thoracic Surgery, Osaka Habikino Medical Center, Habikino, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
7
|
Zhang J, Huang Y, Han Y, Dong D, Cao Y, Chen X, Liu D, Cheng X, Sun D, Li H, Zhang Y. Immune microenvironment heterogeneity of concurrent adenocarcinoma and squamous cell carcinoma in multiple primary lung cancers. NPJ Precis Oncol 2024; 8:55. [PMID: 38424363 PMCID: PMC10904822 DOI: 10.1038/s41698-024-00548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
The molecular profiles and tumor immune microenvironment (TIME) of multiple primary lung cancers (MPLCs) presenting as concurrent lung adenocarcinoma (ADC) and squamous cell carcinoma (SQCC) remain unknown. We aimed to clarify these factors. We performed whole-exome sequencing (WES), RNA sequencing (RNA-Seq), and multiplex immunohistochemistry (mIHC) for five patients with concurrent ADC and SQCC. We found the genetic mutations were similar between ADC and SQCC groups. RNA-Seq revealed that the gene expression and pathways enriched in ADC and SQCC groups were quite different. Gene set enrichment analysis (GSVA) showed that nine gene sets were significantly differentially expressed between the ADC and SQCC groups (p < 0.05), with four gene sets relevant to squamous cell features upregulated in the SQCC group and five gene sets upregulated in the ADC group. Reactome enrichment analysis of differentially expressed genes showed that the immune function-related pathways, including programmed cell death, innate immune system, interleukin-12 family signaling, and toll-like receptor 2/4 pathways, etc. were significantly enriched. Transcriptomic TIME analysis, with mIHC in patient specimens and in vivo validation, showed tumor-infiltrating immune cells were significantly more enriched and diverse in ADC, especially CD8 + T cells. Our results revealed that the transcriptomic profiles and TIME features were quite different between ADC and SQCC lesions. ADC lesions exhibited a more active TIME than SQCC lesions in MPLCs.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Yiheng Huang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Yichao Han
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Dong Dong
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Yuqin Cao
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Xiang Chen
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Di Liu
- Genecast Biotechnology Co., Ltd., 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, China
| | - Xueyan Cheng
- Genecast Biotechnology Co., Ltd., 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, China
| | - Debin Sun
- Genecast Biotechnology Co., Ltd., 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.
| | - Yajie Zhang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.
| |
Collapse
|
8
|
Shi S, Chu Y, Liu H, Yu L, Sun D, Yang J, Tian G, Ji L, Zhang C, Lu X. Predictable regulation of survival by intratumoral microbe-immune crosstalk in patients with lung adenocarcinoma. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:29-40. [PMID: 38375207 PMCID: PMC10876218 DOI: 10.15698/mic2024.02.813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Intratumoral microbiota can regulate the tumor immune microenvironment (TIME) and mediate tumor prognosis by promoting inflammatory response or inhibiting anti-tumor effects. Recent studies have elucidated the potential role of local tumor microbiota in the development and progression of lung adenocarcinoma (LUAD). However, whether intratumoral microbes are involved in the TIME that mediates the prognosis of LUAD remains unknown. Here, we obtained the matched tumor microbiome and host transcriptome and survival data of 478 patients with LUAD in The Cancer Genome Atlas (TCGA). Machine learning models based on immune cell marker genes can predict 1- to 5-year survival with relative accuracy. Patients were stratified into high- and low-survival-risk groups based on immune cell marker genes, with significant differences in intratumoral microbial communities. Specifically, patients in the high-risk group had significantly higher alpha diversity (p < 0.05) and were characterized by an enrichment of lung cancer-related genera such as Streptococcus. However, network analysis highlighted a more active pattern of dominant bacteria and immune cell crosstalk in TIME in the low-risk group compared to the high-risk group. Our study demonstrated that intratumoral microbiota-immune crosstalk was strongly associated with prognosis in LUAD patients, which would provide new targets for the development of precise therapeutic strategies.
Collapse
Affiliation(s)
- Shuo Shi
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yuwen Chu
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, Shandong, China
| | - Haiyan Liu
- College of Information Engineering, Changsha Medical University, Changsha 410219, Hunan, China
- Academician Workstation, Changsha Medical University, Changsha 410219, Hunan, China
| | - Lan Yu
- Clinical Medical Research Center, Inner Mongolian People's Hospital, No. 20, Zhaowuda Road, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of The Metabolic Disease, Inner Mongolian People's Hospital, No. 20, Zhaowuda Road, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, No. 20, Zhaowuda Road, Hohhot, Inner Mongolia, China
| | - Dejun Sun
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, No. 20, Zhaowuda Road, Hohhot, Inner Mongolia, China
- Pulmonary and Critical Care Medicine, Inner Mongolian People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, Shandong, China
- Academician Workstation, Changsha Medical University, Changsha 410219, Hunan, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, Shandong, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, Shandong, China
| | - Cong Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine/No. 39, 12th Bridge Road, Jinniu District, Chengdu City, Sichuan Province, 610072, China
| | - Xinxin Lu
- Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research
| |
Collapse
|
9
|
Cao M, Wang Z, Lan W, Xiang B, Liao W, Zhou J, Liu X, Wang Y, Zhang S, Lu S, Lang J, Zhao Y. The roles of tissue resident macrophages in health and cancer. Exp Hematol Oncol 2024; 13:3. [PMID: 38229178 PMCID: PMC10790434 DOI: 10.1186/s40164-023-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
As integral components of the immune microenvironment, tissue resident macrophages (TRMs) represent a self-renewing and long-lived cell population that plays crucial roles in maintaining homeostasis, promoting tissue remodeling after damage, defending against inflammation and even orchestrating cancer progression. However, the exact functions and roles of TRMs in cancer are not yet well understood. TRMs exhibit either pro-tumorigenic or anti-tumorigenic effects by engaging in phagocytosis and secreting diverse cytokines, chemokines, and growth factors to modulate the adaptive immune system. The life-span, turnover kinetics and monocyte replenishment of TRMs vary among different organs, adding to the complexity and controversial findings in TRMs studies. Considering the complexity of tissue associated macrophage origin, macrophages targeting strategy of each ontogeny should be carefully evaluated. Consequently, acquiring a comprehensive understanding of TRMs' origin, function, homeostasis, characteristics, and their roles in cancer for each specific organ holds significant research value. In this review, we aim to provide an outline of homeostasis and characteristics of resident macrophages in the lung, liver, brain, skin and intestinal, as well as their roles in modulating primary and metastatic cancer, which may inform and serve the future design of targeted therapies.
Collapse
Affiliation(s)
- Minmin Cao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wanying Lan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Guixi Community Health Center of the Chengdu High-Tech Zone, Chengdu, China
| | - Binghua Xiang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjun Liao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaomeng Liu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yiling Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shichuan Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shun Lu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Zhao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
10
|
Tang R, Wang H, Tang M. Roles of tissue-resident immune cells in immunotherapy of non-small cell lung cancer. Front Immunol 2023; 14:1332814. [PMID: 38130725 PMCID: PMC10733439 DOI: 10.3389/fimmu.2023.1332814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common and lethal type of lung cancer, with limited treatment options and poor prognosis. Immunotherapy offers hope for improving the survival and quality of life of NSCLC patients, but its efficacy depends on the tumor immune microenvironment (TME). Tissue-resident immune cells are a subset of immune cells that reside in various tissues and organs, and play an important role in fighting tumors. In NSCLC, tissue-resident immune cells are heterogeneous in their distribution, phenotype, and function, and can either promote or inhibit tumor progression and response to immunotherapy. In this review, we summarize the current understanding on the characteristics, interactions, and roles of tissue-resident immune cells in NSCLC. We also discuss the potential applications of tissue-resident immune cells in NSCLC immunotherapy, including immune checkpoint inhibitors (ICIs), other immunomodulatory agents, and personalized cell-based therapies. We highlight the challenges and opportunities for developing targeted therapies for tissue-resident immune cells and optimizing existing immunotherapeutic approaches for NSCLC patients. We propose that tissue-resident immune cells are a key determinant of NSCLC outcome and immunotherapy response, and warrant further investigation in future research.
Collapse
Affiliation(s)
- Rui Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Sichuan, Luzhou, China
| | - Mingxi Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Yaan People’s Hospital (Yaan Hospital of West China Hospital of Sichuan University), Yaan, Sichuan, China
| |
Collapse
|
11
|
Su Z, Luo M, Chen ZL, Lan H. Comparison of the Ways in Which Nitidine Chloride and Bufalin Induce Programmed Cell Death in Hematological Tumor Cells. Appl Biochem Biotechnol 2023; 195:7755-7765. [PMID: 37086379 PMCID: PMC10754759 DOI: 10.1007/s12010-023-04468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/23/2023]
Abstract
The objective of this work to study the programmed cell death (PCD) in hematological tumor cells induced by nitidine chloride (NC) and bufalin (BF). Hematological tumor cells were exposed to various doses of NC and BF to measure the level of growth inhibition. While inverted microscope is used to observe cell morphology, western blot technique is used to detect apoptosis-related protein expression levels. The effects of NC and BF on hematological tumor cells were different. Although abnormal cell morphology could be seen under the inverted microscope, the western blot results showed that the two medicines induced PCD through different pathways. Drug resistance varied in intensity across distinct cells. THP-1, Jurkat, and RPMI-8226 each had half maximum inhibitory concentrations (IC50) of 36.23 nM, 26.71 nM, and 40.46 nM in BF, and 9.24 µM, 4.33 µM, and 28.18 µM in NC, respectively. Different hematopoietic malignancy cells exhibit varying degrees of drug resistance, and the mechanisms by which apoptosis of hematologic tumor cells is triggered by NC and BF are also distinct.
Collapse
Affiliation(s)
- Zejie Su
- Department of Pharmacy, Shunde Hospital of Guangzhou University of Chinese traditional Medicine, Shunde, People's Republic of China
| | - Man Luo
- Department of Hemalology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhi Lian Chen
- Department of Hemalology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Hai Lan
- Department of Pharmacy, Shunde Hospital of Guangzhou University of Chinese traditional Medicine, Shunde, People's Republic of China.
| |
Collapse
|
12
|
Ma S, Caligiuri MA, Yu J. Harnessing Natural Killer Cells for Lung Cancer Therapy. Cancer Res 2023; 83:3327-3339. [PMID: 37531223 DOI: 10.1158/0008-5472.can-23-1097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Although natural killer (NK) cells are garnering interest as a potential anticancer therapy because they selectively recognize and eliminate cancer cells, their use in treating solid tumors, including lung cancer, has been limited due to impediments to their efficacy, such as their limited ability to reach tumor tissues, the reduced antitumor activity of tumor-infiltrating NK cells, and the suppressive tumor microenvironment (TME). This comprehensive review provides an in-depth analysis of the cross-talk between the lung cancer TME and NK cells. We highlight the various mechanisms used by the TME to modulate NK-cell phenotypes and limit infiltration, explore the role of the TME in limiting the antitumor activity of NK cells, and discuss the current challenges and obstacles that hinder the success of NK-cell-based immunotherapy for lung cancer. Potential opportunities and promising strategies to address these challenges have been implemented or are being developed to optimize NK-cell-based immunotherapy for lung cancer. Through critical evaluation of existing literature and emerging trends, this review provides a comprehensive outlook on the future of NK-cell-based immunotherapy for treating lung cancer.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
- Comprehensive Cancer Center, City of Hope, Los Angeles, California
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
- Comprehensive Cancer Center, City of Hope, Los Angeles, California
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, California
| |
Collapse
|