1
|
Schubert SA, Ruano D, Joruiz SM, Stroosma J, Glavak N, Montali A, Pinto LM, Rodríguez-Girondo M, Barge-Schaapveld DQCM, Nielsen M, van Nesselrooij BPM, Mensenkamp AR, van Leerdam ME, Sharp TH, Morreau H, Bourdon JC, de Miranda NFCC, van Wezel T. Germline variant affecting p53β isoforms predisposes to familial cancer. Nat Commun 2024; 15:8208. [PMID: 39294166 PMCID: PMC11410958 DOI: 10.1038/s41467-024-52551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Germline and somatic TP53 variants play a crucial role during tumorigenesis. However, genetic variations that solely affect the alternatively spliced p53 isoforms, p53β and p53γ, are not fully considered in the molecular diagnosis of Li-Fraumeni syndrome and cancer. In our search for additional cancer predisposing variants, we identify a heterozygous stop-lost variant affecting the p53β isoforms (p.*342Serext*17) in four families suspected of an autosomal dominant cancer syndrome with colorectal, breast and papillary thyroid cancers. The stop-lost variant leads to the 17 amino-acid extension of the p53β isoforms, which increases oligomerization to canonical p53α and dysregulates the expression of p53's transcriptional targets. Our study reveals the capacity of p53β mutants to influence p53 signalling and contribute to the susceptibility of different cancer types. These findings underscore the significance of p53 isoforms and the necessity of comprehensive investigation into the entire TP53 gene in understanding cancer predisposition.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jordy Stroosma
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikolina Glavak
- School of Medicine, University of Dundee, Dundee, UK
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Anna Montali
- School of Medicine, University of Dundee, Dundee, UK
| | - Lia M Pinto
- School of Medicine, University of Dundee, Dundee, UK
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Section of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Sandoval RL, Bottosso M, Tianyu L, Polidorio N, Bychkovsky BL, Verret B, Gennari A, Cahill S, Achatz MI, Caron O, Imbert-Bouteille M, Noguès C, Mawell KN, Fortuno C, Spurdle AB, Tayob N, Andre F, Garber JE. TP53-associated early breast cancer: new observations from a large cohort. J Natl Cancer Inst 2024; 116:1246-1254. [PMID: 38569880 PMCID: PMC11308175 DOI: 10.1093/jnci/djae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND A recent large, well-annotated international cohort of patients with Li-Fraumeni syndrome and early-stage breast cancer was examined for shared features. METHODS This multicenter cohort study included women with a germline TP53 pathogenic or likely pathogenic variant and nonmetastatic breast cancer diagnosed between 2002 and 2022. Clinical and genetic data were obtained from institutional registries and clinical charts. Descriptive statistics were used to summarize proportions, and differences were assessed using χ2 or Wilcoxon rank sum tests. Metachronous contralateral breast cancer risk, radiation-induced sarcoma risk, and recurrence-free survival were analyzed using the Kaplan-Meier methodology. RESULTS Among 227 women who met study criteria, the median age of first breast cancer diagnosis was 37 years (range = 21-71), 11.9% presented with bilateral synchronous breast cancer, and 18.1% had ductal carcinoma in situ only. In total, 166 (73.1%) patients underwent mastectomies, including 67 bilateral mastectomies as first breast cancer surgery. Among those patients with retained breast tissue, the contralateral breast cancer rate was 25.3% at 5 years. Among 186 invasive tumors, 72.1% were stages I to II, 48.9% were node negative, and the most common subtypes were hormone receptor-positive/HER2-negative (40.9%) and hormone receptor positive/HER2 positive (34.4%). At a median follow-up of 69.9 months (interquartile range = 32.6-125.9), invasive hormone receptor-positive/HER2-negative disease had the highest recurrence risk among the subtypes (5-year recurrence-free survival = 61.1%, P = .001). Among those who received radiation therapy (n = 79), the 5-year radiation-induced sarcoma rate was 4.8%. CONCLUSION We observed high rates of ductal carcinoma in situ, hormone receptor-positive, and HER2-positive breast cancers, with a worse outcome in the hormone receptor-positive/HER2-negative luminal tumors, despite appropriate treatment. Confirmation of these findings in further studies could have implications for breast cancer care in those with Li-Fraumeni syndrome.
Collapse
Affiliation(s)
- Renata L Sandoval
- Medical Oncology Center, Hospital Sírio-Libanês, Brasília, DF, Brazil
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michele Bottosso
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology Department, Gustave Roussy Cancer Campus, INERM U981, Université Paris Saclay, France
| | - Li Tianyu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Natalia Polidorio
- Breast Surgery Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brittany L Bychkovsky
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin Verret
- Medical Oncology Department, Gustave Roussy Cancer Campus, INERM U981, Université Paris Saclay, France
| | - Alessandra Gennari
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Sophie Cahill
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Olivier Caron
- Medical Oncology Department, Institut Gustave Roussy, Villejuif, France
| | | | - Catherine Noguès
- Cancer Risk Management Department, Clinical Oncogenetics, Institut Paoli-Calmettes, Marseille, France
- Aix Marseille Université, INSERM, IRD, SESSTIM, Marseille, France
| | - Kara N Mawell
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nabihah Tayob
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fabrice Andre
- Medical Oncology Department, Gustave Roussy Cancer Campus, INERM U981, Université Paris Saclay, France
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Bertrums EJM, de Kanter JK, Derks LLM, Verheul M, Trabut L, van Roosmalen MJ, Hasle H, Antoniou E, Reinhardt D, Dworzak MN, Mühlegger N, van den Heuvel-Eibrink MM, Zwaan CM, Goemans BF, van Boxtel R. Selective pressures of platinum compounds shape the evolution of therapy-related myeloid neoplasms. Nat Commun 2024; 15:6025. [PMID: 39019934 PMCID: PMC11255340 DOI: 10.1038/s41467-024-50384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) arise as a complication of chemo- and/or radiotherapy. Although t-MN can occur both in adult and childhood cancer survivors, the mechanisms driving therapy-related leukemogenesis likely vary across different ages. Chemotherapy is thought to induce driver mutations in children, whereas in adults pre-existing mutant clones are selected by the exposure. However, selective pressures induced by chemotherapy early in life are less well studied. Here, we use single-cell whole genome sequencing and phylogenetic inference to show that the founding cell of t-MN in children starts expanding after cessation of platinum exposure. In patients with Li-Fraumeni syndrome, characterized by a germline TP53 mutation, we find that the t-MN already expands during treatment, suggesting that platinum-induced growth inhibition is TP53-dependent. Our results demonstrate that germline aberrations can interact with treatment exposures in inducing t-MN, which is important for the development of more targeted, patient-specific treatment regimens and follow-up.
Collapse
Affiliation(s)
- Eline J M Bertrums
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jurrian K de Kanter
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lucca L M Derks
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Mark Verheul
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurianne Trabut
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Evangelia Antoniou
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Dirk Reinhardt
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Michael N Dworzak
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nora Mühlegger
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - C Michel Zwaan
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Bianca F Goemans
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Agarwal H, Tal P, Goldfinger N, Chattopadhyay E, Malkin D, Rotter V, Attery A. Mutant p53 reactivation restricts the protumorigenic consequences of wild type p53 loss of heterozygosity in Li-Fraumeni syndrome patient-derived fibroblasts. Cell Death Differ 2024; 31:855-867. [PMID: 38745079 PMCID: PMC11239894 DOI: 10.1038/s41418-024-01307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The p53 tumor suppressor, encoded by the TP53 gene, serves as a major barrier against malignant transformation. Patients with Li-Fraumeni syndrome (LFS) inherit a mutated TP53 allele from one parent and a wild-type TP53 allele from the other. Subsequently, the wild-type allele is lost and only the mutant TP53 allele remains. This process, which is termed loss of heterozygosity (LOH), results in only mutant p53 protein expression. We used primary dermal fibroblasts from LFS patients carrying the hotspot p53 gain-of-function pathogenic variant, R248Q to study the LOH process and characterize alterations in various pathways before and after LOH. We previously described the derivation of mutant p53 reactivating peptides, designated pCAPs (p53 Conformation Activating Peptides). In this study, we tested the effect of lead peptide pCAP-250 on LOH and on its associated cellular changes. We report that treatment of LFS fibroblasts with pCAP-250 prevents the accumulation of mutant p53 protein, inhibits LOH, and alleviates its cellular consequences. Furthermore, prolonged treatment with pCAP-250 significantly reduces DNA damage and restores long-term genomic stability. pCAPs may thus be contemplated as a potential preventive treatment to prevent or delay early onset cancer in carriers of mutant p53.
Collapse
Affiliation(s)
- Himanshi Agarwal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Perry Tal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Esita Chattopadhyay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Malkin
- Department of Genetics and Genome Biology and the Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Medical Biophysics and Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ayush Attery
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Kibe Y, Ohka F, Aoki K, Yamaguchi J, Motomura K, Ito E, Takeuchi K, Nagata Y, Ito S, Mizutani N, Shiba Y, Maeda S, Nishikawa T, Shimizu H, Saito R. Pediatric-type high-grade gliomas with PDGFRA amplification in adult patients with Li-Fraumeni syndrome: clinical and molecular characterization of three cases. Acta Neuropathol Commun 2024; 12:57. [PMID: 38605367 PMCID: PMC11010357 DOI: 10.1186/s40478-024-01762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome caused by heterozygous germline mutations or deletions in the TP53 tumor suppressor gene. Central nervous system tumors, such as choroid plexus tumors, medulloblastomas, and diffuse gliomas, are frequently found in patients with LFS. Although molecular profiles of diffuse gliomas that develop in pediatric patients with LFS have been elucidated, those in adults are limited. Recently, diffuse gliomas have been divided into pediatric- and adult-type gliomas, based on their distinct molecular profiles. In the present study, we investigated the molecular profiles of high-grade gliomas in three adults with LFS. These tumors revealed characteristic histopathological findings of high-grade glioma or glioblastoma and harbored wild-type IDH1/2 according to whole exome sequencing (WES). However, these tumors did not exhibit the key molecular alterations of glioblastoma, IDH-wildtype such as TERT promoter mutation, EGFR amplification, or chromosome 7 gain and 10 loss. Although WES revealed no other characteristic gene mutations or copy number alterations in high-grade gliomas, such as those in histone H3 genes, PDGFRA amplification was found in all three cases together with uniparental disomy of chromosome 17p, where the TP53 gene is located. DNA methylation analyses revealed that all tumors exhibited DNA methylation profiles similar to those of pediatric-type high-grade glioma H3-wildtype and IDH-wildtype (pHGG H3-/IDH-wt), RTK1 subtype. These data suggest that high-grade gliomas developed in adult patients with LFS may be involved in pHGG H3-/IDH-wt. PDGFRA and homozygous alterations in TP53 may play pivotal roles in the development of this type of glioma in adult patients with LFS.
Collapse
Affiliation(s)
- Yuji Kibe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Eiji Ito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhito Takeuchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuichi Nagata
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoshi Ito
- Department of Neurosurgery, Konan Kosei Hospital, 137 Oomatsubara, Takaya-cho, Konan, 483-8703, Japan
| | - Nobuhiko Mizutani
- Department of Neurosurgery, Konan Kosei Hospital, 137 Oomatsubara, Takaya-cho, Konan, 483-8703, Japan
| | - Yoshiki Shiba
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomohide Nishikawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroki Shimizu
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
6
|
Boruah N, Hoyos D, Moses R, Hausler R, Desai H, Le AN, Good M, Kelly G, Raghavakaimal A, Tayeb M, Narasimhamurthy M, Doucette A, Gabriel P, Feldman MJ, Park J, de Rodas ML, Schalper KA, Goldfarb SB, Nayak A, Levine AJ, Greenbaum BD, Maxwell KN. Distinct genomic and immunologic tumor evolution in germline TP53-driven breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588009. [PMID: 38617260 PMCID: PMC11014613 DOI: 10.1101/2024.04.03.588009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Pathogenic germline TP53 alterations cause Li-Fraumeni Syndrome (LFS), and breast cancer is the most common cancer in LFS females. We performed first of its kind multimodal analysis of LFS breast cancer (LFS-BC) compared to sporadic premenopausal BC. Nearly all LFS-BC underwent biallelic loss of TP53 with no recurrent oncogenic variants except ERBB2 (HER2) amplification. Compared to sporadic BC, in situ and invasive LFS-BC exhibited a high burden of short amplified aneuploid segments (SAAS). Pro-apoptotic p53 target genes BAX and TP53I3 failed to be up-regulated in LFS-BC as was seen in sporadic BC compared to normal breast tissue. LFS-BC had lower CD8+ T-cell infiltration compared to sporadic BC yet higher levels of proliferating cytotoxic T-cells. Within LFS-BC, progression from in situ to invasive BC was marked by an increase in chromosomal instability with a decrease in proliferating cytotoxic T-cells. Our study uncovers critical events in mutant p53-driven tumorigenesis in breast tissue.
Collapse
Affiliation(s)
- Nabamita Boruah
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Renyta Moses
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ryan Hausler
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heena Desai
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anh N Le
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Madeline Good
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory Kelly
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ashvathi Raghavakaimal
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Maliha Tayeb
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mohana Narasimhamurthy
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | - Abigail Doucette
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter Gabriel
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael J. Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | - Jinae Park
- Departments of Medicine and Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Shari B. Goldfarb
- Departments of Medicine and Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical Center, New York, NY
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | | | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Medical Center, New York, NY:
| | - Kara N. Maxwell
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA
| |
Collapse
|
7
|
Zawacka JE. p53 biology and reactivation for improved therapy in MDS and AML. Biomark Res 2024; 12:34. [PMID: 38481290 PMCID: PMC10936007 DOI: 10.1186/s40364-024-00579-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/01/2024] [Indexed: 11/02/2024] Open
Abstract
Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) originate from preleukemic hematopoietic conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenia of undetermined significance (CCUS) and have variable outcomes despite the successful implementation of targeted therapies. The prognosis differs depending on the molecular subgroup. In patients with TP53 mutations, the most inferior outcomes across independent studies were observed. Myeloid malignancies with TP53 mutations have complex cytogenetics and extensive structural variants. These factors contribute to worse responses to induction therapy, demethylating agents, or venetoclax-based treatments. Survival of patients with biallelic TP53 gene mutations is often less than one year but this depends on the type of treatment applied. It is still controversial whether the allelic state of mutant TP53 impacts the outcomes in patients with AML and high-risk MDS. Further studies are needed to justify estimating TP53 LOH status for better risk assessment. Yet, TP53-mutated MDS, MDS/AML and AML are now classified separately in the International Consensus Classification (ICC). In the clinical setting, the wild-type p53 protein is reactivated pharmacologically by targeting p53/MDM2/MDM4 interactions and mutant p53 reactivation is achieved by refolding the DNA binding domain to wild-type-like conformation or via targeted degradation of the mutated protein. This review discusses our current understanding of p53 biology in MDS and AML and the promises and failures of wild-type and mutant p53 reactivation in the clinical trial setting.
Collapse
Affiliation(s)
- Joanna E Zawacka
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
- Department of Biochemistry, Laboratory of Biophysics and p53 Protein Biology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
8
|
Dixon-Zegeye M, Shaw R, Collins L, Perez-Smith K, Ooms A, Qiao M, Pantziarka P, Izatt L, Tischkowitz M, Harrison RE, George A, Woodward ER, Lord S, Hawkes L, Evans DG, Franklin J, Hanson H, Blagden SP. Cancer Precision-Prevention trial of Metformin in adults with Li Fraumeni syndrome (MILI) undergoing yearly MRI surveillance: a randomised controlled trial protocol. Trials 2024; 25:103. [PMID: 38308321 PMCID: PMC10837926 DOI: 10.1186/s13063-024-07929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) is a rare autosomal dominant disease caused by inherited or de novo germline pathogenic variants in TP53. Individuals with LFS have a 70-100% lifetime risk of developing cancer. The current standard of care involves annual surveillance with whole-body and brain MRI (WB-MRI) and clinical review; however, there are no chemoprevention agents licensed for individuals with LFS. Preclinical studies in LFS murine models show that the anti-diabetic drug metformin is chemopreventive and, in a pilot intervention trial, short-term use of metformin was well-tolerated in adults with LFS. However, metformin's mechanism of anticancer activity in this context is unclear. METHODS Metformin in adults with Li-Fraumeni syndrome (MILI) is a Precision-Prevention phase II open-labelled unblinded randomised clinical trial in which 224 adults aged ≥ 16 years with LFS are randomised 1:1 to oral metformin (up to 2 mg daily) plus annual MRI surveillance or annual MRI surveillance alone for up to 5 years. The primary endpoint is to compare cumulative cancer-free survival up to 5 years (60 months) from randomisation between the intervention (metformin) and control (no metformin) arms. Secondary endpoints include a comparison of cumulative tumour-free survival at 5 years, overall survival at 5 years and clinical characteristics of emerging cancers between trial arms. Safety, toxicity and acceptability of metformin; impact of metformin on quality of life; and impact of baseline lifestyle risk factors on cancer incidence will be assessed. Exploratory end-points will evaluate the mechanism of action of metformin as a cancer preventative, identify biomarkers of response or carcinogenesis and assess WB-MRI performance as a diagnostic tool for detecting cancers in participants with LFS by assessing yield and diagnostic accuracy of WB-MRI. DISCUSSION Alongside a parallel MILI study being conducted by collaborators at the National Cancer Institute (NCI), MILI is the first prevention trial to be conducted in this high-risk group. The MILI study provides a unique opportunity to evaluate the efficacy of metformin as a chemopreventive alongside exploring its mechanism of anticancer action and the biological process of mutated P53-driven tumourigenesis. TRIAL REGISTRATION ISRCTN16699730. Registered on 28 November 2022. URL: https://www.isrctn.com/ EudraCT/CTIS number 2022-000165-41.
Collapse
Affiliation(s)
- Miriam Dixon-Zegeye
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Rachel Shaw
- Oncology Clinical Trials Office, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Linda Collins
- Oncology Clinical Trials Office, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Kendra Perez-Smith
- Trial Support Unit, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Alexander Ooms
- Centre for Statistics in Medicine and Oxford Clinical Trials Research Unit (OCTRU), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, Oxford, UK
| | - Maggie Qiao
- Centre for Statistics in Medicine and Oxford Clinical Trials Research Unit (OCTRU), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, Oxford, UK
| | - Pan Pantziarka
- George Pantziarka TP53 Trust, 7 Surbiton Cres, Kingston upon Thames, UK
| | - Louise Izatt
- Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Rachel E Harrison
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Hucknall Rd, Nottingham, UK
| | | | - Emma R Woodward
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Simon Lord
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Lara Hawkes
- Oxford Centre for Genomic Medicine, ACE building, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford, UK
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - James Franklin
- Institute of Medical Imaging and Visualisation, Bournemouth University, St Pauls Lane, Bournemouth, UK
| | - Helen Hanson
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Faculty of Health and Life Sciences, University of Exeter, Heavitree Road, Exeter, UK
| | - Sarah P Blagden
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
- Oncology Clinical Trials Office, University of Oxford, Old Road Campus Research Building, Oxford, UK.
| |
Collapse
|
9
|
Tuval A, Strandgren C, Heldin A, Palomar-Siles M, Wiman KG. Pharmacological reactivation of p53 in the era of precision anticancer medicine. Nat Rev Clin Oncol 2024; 21:106-120. [PMID: 38102383 DOI: 10.1038/s41571-023-00842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
p53, which is encoded by the most frequently mutated gene in cancer, TP53, is an attractive target for novel cancer therapies. Despite major challenges associated with this approach, several compounds that either augment the activity of wild-type p53 or restore all, or some, of the wild-type functions to p53 mutants are currently being explored. In wild-type TP53 cancer cells, p53 function is often abrogated by overexpression of the negative regulator MDM2, and agents that disrupt p53-MDM2 binding can trigger a robust p53 response, albeit potentially with induction of p53 activity in non-malignant cells. In TP53-mutant cancer cells, compounds that promote the refolding of missense mutant p53 or the translational readthrough of nonsense mutant TP53 might elicit potent cell death. Some of these compounds have been, or are being, tested in clinical trials involving patients with various types of cancer. Nonetheless, no p53-targeting drug has so far been approved for clinical use. Advances in our understanding of p53 biology provide some clues as to the underlying reasons for the variable clinical activity of p53-restoring therapies seen thus far. In this Review, we discuss the intricate interactions between p53 and its cellular and microenvironmental contexts and factors that can influence p53's activity. We also propose several strategies for improving the clinical efficacy of these agents through the complex perspective of p53 functionality.
Collapse
Affiliation(s)
- Amos Tuval
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Angelos Heldin
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden.
| |
Collapse
|
10
|
Fischer NW, Ma YHV, Gariépy J. Emerging insights into ethnic-specific TP53 germline variants. J Natl Cancer Inst 2023; 115:1145-1156. [PMID: 37352403 PMCID: PMC10560603 DOI: 10.1093/jnci/djad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
The recent expansion of human genomics repositories has facilitated the discovery of novel TP53 variants in populations of different ethnic origins. Interpreting TP53 variants is a major clinical challenge because they are functionally diverse, confer highly variable predisposition to cancer (including elusive low-penetrance alleles), and interact with genetic modifiers that alter tumor susceptibility. Here, we discuss how a cancer risk continuum may relate to germline TP53 mutations on the basis of our current review of genotype-phenotype studies and an integrative analysis combining functional and sequencing datasets. Our study reveals that each ancestry contains a distinct TP53 variant landscape defined by enriched ethnic-specific alleles. In particular, the discovery and characterization of suspected low-penetrance ethnic-specific variants with unique functional consequences, including P47S (African), G334R (Ashkenazi Jewish), and rs78378222 (Icelandic), may provide new insights in terms of managing cancer risk and the efficacy of therapy. Additionally, our analysis highlights infrequent variants linked to milder cancer phenotypes in various published reports that may be underdiagnosed and require further investigation, including D49H in East Asians and R181H in Europeans. Overall, the sequencing and projected functions of TP53 variants arising within ethnic populations and their interplay with modifiers, as well as the emergence of CRISPR screens and AI tools, are now rapidly improving our understanding of the cancer susceptibility spectrum, leading toward more accurate and personalized cancer risk assessments.
Collapse
Affiliation(s)
- Nicholas W Fischer
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yu-Heng Vivian Ma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jean Gariépy
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Machado HE, Øbro NF, Williams N, Tan S, Boukerrou AZ, Davies M, Belmonte M, Mitchell E, Baxter EJ, Mende N, Clay A, Ancliff P, Köglmeier J, Killick SB, Kulasekararaj A, Meyer S, Laurenti E, Campbell PJ, Kent DG, Nangalia J, Warren AJ. Convergent somatic evolution commences in utero in a germline ribosomopathy. Nat Commun 2023; 14:5092. [PMID: 37608017 PMCID: PMC10444798 DOI: 10.1038/s41467-023-40896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
Clonal tracking of cells using somatic mutations permits exploration of clonal dynamics in human disease. Here, we perform whole genome sequencing of 323 haematopoietic colonies from 10 individuals with the inherited ribosomopathy Shwachman-Diamond syndrome to reconstruct haematopoietic phylogenies. In ~30% of colonies, we identify mutually exclusive mutations in TP53, EIF6, RPL5, RPL22, PRPF8, plus chromosome 7 and 15 aberrations that increase SBDS and EFL1 gene dosage, respectively. Target gene mutations commence in utero, resulting in a profusion of clonal expansions, with only a few haematopoietic stem cell lineages (mean 8, range 1-24) contributing ~50% of haematopoietic colonies across 8 individuals (range 4-100% clonality) by young adulthood. Rapid clonal expansion during disease transformation is associated with biallelic TP53 mutations and increased mutation burden. Our study highlights how convergent somatic mutation of the p53-dependent nucleolar surveillance pathway offsets the deleterious effects of germline ribosomopathy but increases opportunity for TP53-mutated cancer evolution.
Collapse
Affiliation(s)
| | - Nina F Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Shengjiang Tan
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK
| | - Ahmed Z Boukerrou
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK
| | - Megan Davies
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - E Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Nicole Mende
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna Clay
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Philip Ancliff
- Department of Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jutta Köglmeier
- Department of Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sally B Killick
- University Hospitals Dorset NHS Foundation Trust, The Royal Bournemouth Hospital, Bournemouth, UK
| | - Austin Kulasekararaj
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust and King's College London, London, UK
| | - Stefan Meyer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, UK
- Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital, Manchester Foundation Trust, Manchester, Oxford Road, Manchester, UK
- Teenage and Adolescent Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK
| | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Alan J Warren
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK.
| |
Collapse
|
12
|
Shah MV, Tran ENH, Shah S, Chhetri R, Baranwal A, Ladon D, Shultz C, Al-Kali A, Brown AL, Chen D, Scott HS, Greipp P, Thomas D, Alkhateeb HB, Singhal D, Gangat N, Kumar S, Patnaik MM, Hahn CN, Kok CH, Tefferi A, Hiwase DK. TP53 mutation variant allele frequency of ≥10% is associated with poor prognosis in therapy-related myeloid neoplasms. Blood Cancer J 2023; 13:51. [PMID: 37041128 PMCID: PMC10090194 DOI: 10.1038/s41408-023-00821-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Revised diagnostic criteria for myeloid neoplasms (MN) issued by the International Consensus Classification (ICC) and the World Health Organization (WHO) recommended major change pertaining to TP53-mutated (TP53mut) MN. However, these assertions have not been specifically examined in therapy-related myeloid neoplasm (t-MN), a subset enriched with TP53mut. We analyzed 488 t-MN patients for TP53mut. At least one TP53mut with variant allele frequency (VAF) ≥ 2% with or without loss of TP53 locus was noted in 182 (37.3%) patients and 88.2% of TP53mut t-MN had a VAF ≥10%. TP53mut t-MN with VAF ≥ 10% had a distinct clinical and biological profile compared to both TP53mut VAF < 10% and wild-type TP53 (TP53wt) cases. Notably, TP53mut VAF ≥ 10% had a significantly shorter survival compared to TP53wt (8.3 vs. 21.6 months; P < 0.001), while the survival of TP53mut VAF < 10% was comparable to TP53wt. Within TP53mut VAF ≥ 10% cohort, the inferior outcomes persisted irrespective of the single- or multi-hit status, co-mutation pattern, or treatments received. Finally, survival of TP53mut patients was poor across all the blast categories and MDS patients with >10% blasts had inferior survival compared to <5%. In summary, TP53mut VAF ≥10% signified a clinically and molecularly homogenous cohort regardless of the allelic status.
Collapse
Affiliation(s)
| | - Elizabeth Ngoc Hoa Tran
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- University of Adelaide, Adelaide, SA, Australia
| | - Syed Shah
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Rakchha Chhetri
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- University of Adelaide, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | | | - Dariusz Ladon
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Carl Shultz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Anna L Brown
- University of Adelaide, Adelaide, SA, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hamish S Scott
- University of Adelaide, Adelaide, SA, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Patricia Greipp
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Daniel Thomas
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- University of Adelaide, Adelaide, SA, Australia
| | | | - Deepak Singhal
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | | | - Sharad Kumar
- University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | | | - Christopher N Hahn
- University of Adelaide, Adelaide, SA, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Chung Hoow Kok
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | | | - Devendra K Hiwase
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
- University of Adelaide, Adelaide, SA, Australia.
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
| |
Collapse
|