1
|
Kannan A, Naganathan AN. Engineering the native ensemble to tune protein function: Diverse mutational strategies and interlinked molecular mechanisms. Curr Opin Struct Biol 2024; 89:102940. [PMID: 39393291 DOI: 10.1016/j.sbi.2024.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Natural proteins are fragile entities, intrinsically sensitive to perturbations both at the level of sequence and their immediate environment. Here, we highlight the diverse strategies available for engineering function through mutations influencing backbone conformational entropy, charge-charge interactions, and in the loops and hinge regions, many of which are located far from the active site. It thus appears that there are potentially numerous ways to microscopically vary the identity of residues and the constituent interactions to tune function. Functional modulation could occur via changes in native-state stability, altered thermodynamic coupling extents within the folded structure, redistributed dynamics, or through modulation of the population of conformational substates. As these mechanisms are intrinsically linked and given the pervasive long-range effects of mutations, it is crucial to consider the interaction network as a whole and fully map the native conformational landscape to place mutational effects in the context of allostery and protein evolution.
Collapse
Affiliation(s)
- Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
2
|
Shen Q, Tang X, Wen X, Cheng S, Xiao P, Zang S, Shen D, Jiang L, Zheng Y, Zhang H, Xu H, Mao C, Zhang M, Hu W, Sun J, Zhang Y, Chen Z. Molecular Determinant Underlying Selective Coupling of Primary G-Protein by Class A GPCRs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310120. [PMID: 38647423 PMCID: PMC11187927 DOI: 10.1002/advs.202310120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Indexed: 04/25/2024]
Abstract
G-protein-coupled receptors (GPCRs) transmit downstream signals predominantly via G-protein pathways. However, the conformational basis of selective coupling of primary G-protein remains elusive. Histamine receptors H2R and H3R couple with Gs- or Gi-proteins respectively. Here, three cryo-EM structures of H2R-Gs and H3R-Gi complexes are presented at a global resolution of 2.6-2.7 Å. These structures reveal the unique binding pose for endogenous histamine in H3R, wherein the amino group interacts with E2065.46 of H3R instead of the conserved D1143.32 of other aminergic receptors. Furthermore, comparative analysis of the H2R-Gs and H3R-Gi complexes reveals that the structural geometry of TM5/TM6 determines the primary G-protein selectivity in histamine receptors. Machine learning (ML)-based structuromic profiling and functional analysis of class A GPCR-G-protein complexes illustrate that TM5 length, TM5 tilt, and TM6 outward movement are key determinants of the Gs and Gi/o selectivity among the whole Class A family. Collectively, the findings uncover the common structural geometry within class A GPCRs that determines the primary Gs- and Gi/o-coupling selectivity.
Collapse
Affiliation(s)
- Qingya Shen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Xinyan Tang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Xin Wen
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
| | - Shizhuo Cheng
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310027China
| | - Peng Xiao
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
| | - Shao‐Kun Zang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Dan‐Dan Shen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceZhejiang Chinese Medical UniversityHangzhou310053China
| | - Huibing Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Haomang Xu
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Chunyou Mao
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and EquipmentZhejiang UniversityHangzhou310016China
| | - Min Zhang
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310027China
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Jin‐Peng Sun
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesPeking UniversityKey Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191China
| | - Yan Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceZhejiang Chinese Medical UniversityHangzhou310053China
| |
Collapse
|
3
|
Natarajan L, De Sciscio ML, Nardi AN, Sekhar A, Del Giudice A, D’Abramo M, Naganathan AN. A finely balanced order-disorder equilibrium sculpts the folding-binding landscape of an antibiotic sequestering protein. Proc Natl Acad Sci U S A 2024; 121:e2318855121. [PMID: 38709926 PMCID: PMC11098121 DOI: 10.1073/pnas.2318855121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/24/2024] [Indexed: 05/08/2024] Open
Abstract
TipA, a MerR family transcription factor from Streptomyces lividans, promotes antibiotic resistance by sequestering broad-spectrum thiopeptide-based antibiotics, thus counteracting their inhibitory effect on ribosomes. TipAS, a minimal binding motif which is expressed as an isoform of TipA, harbors a partially disordered N-terminal subdomain that folds upon binding multiple antibiotics. The extent and nature of the underlying molecular heterogeneity in TipAS that shapes its promiscuous folding-function landscape is an open question and is critical for understanding antibiotic-sequestration mechanisms. Here, combining equilibrium and time-resolved experiments, statistical modeling, and simulations, we show that the TipAS native ensemble exhibits a pre-equilibrium between binding-incompetent and binding-competent substates, with the fully folded state appearing only as an excited state under physiological conditions. The binding-competent state characterized by a partially structured N-terminal subdomain loses structure progressively in the physiological range of temperatures, swells on temperature increase, and displays slow conformational exchange across multiple conformations. Binding to the bactericidal antibiotic thiostrepton follows a combination of induced-fit and conformational-selection-like mechanisms, via partial binding and concomitant stabilization of the binding-competent substate. These ensemble features are evolutionarily conserved across orthologs from select bacteria that infect humans, underscoring the functional role of partial disorder in the native ensemble of antibiotic-sequestering proteins belonging to the MerR family.
Collapse
Affiliation(s)
- Lawanya Natarajan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai600036, India
| | | | | | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru560 012, India
| | | | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome00185, Italy
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai600036, India
| |
Collapse
|
4
|
Lukose B, Maruno T, Faidh M, Uchiyama S, Naganathan A. Molecular and thermodynamic determinants of self-assembly and hetero-oligomerization in the enterobacterial thermo-osmo-regulatory protein H-NS. Nucleic Acids Res 2024; 52:2157-2173. [PMID: 38340344 PMCID: PMC10954469 DOI: 10.1093/nar/gkae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Environmentally regulated gene expression is critical for bacterial survival under stress conditions, including extremes in temperature, osmolarity and nutrient availability. Here, we dissect the thermo- and osmo-responsory behavior of the transcriptional repressor H-NS, an archetypal nucleoid-condensing sensory protein, ubiquitous in enterobacteria that infect the mammalian gut. Through experiments and thermodynamic modeling, we show that H-NS exhibits osmolarity, temperature and concentration dependent self-association, with a highly polydisperse native ensemble dominated by monomers, dimers, tetramers and octamers. The relative population of these oligomeric states is determined by an interplay between dimerization and higher-order oligomerization, which in turn drives a competition between weak homo- versus hetero-oligomerization of protein-protein and protein-DNA complexes. A phosphomimetic mutation, Y61E, fully eliminates higher-order self-assembly and preserves only dimerization while weakening DNA binding, highlighting that oligomerization is a prerequisite for strong DNA binding. We further demonstrate the presence of long-distance thermodynamic connectivity between dimerization and oligomerization sites on H-NS which influences the binding of the co-repressor Cnu, and switches the DNA binding mode of the hetero-oligomeric H-NS:Cnu complex. Our work thus uncovers important organizational principles in H-NS including a multi-layered thermodynamic control, and provides a molecular framework broadly applicable to other thermo-osmo sensory proteins that employ similar mechanisms to regulate gene expression.
Collapse
Affiliation(s)
- Bincy Lukose
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Mohammed A Faidh
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
5
|
Buckley SJ, Nguyen TV, Cummins SF, Elizur A, Fitzgibbon QP, Smith GS, Mykles DL, Ventura T. Evaluating conserved domains and motifs of decapod gonadotropin-releasing hormone G protein-coupled receptor superfamily. Front Endocrinol (Lausanne) 2024; 15:1348465. [PMID: 38444586 PMCID: PMC10912298 DOI: 10.3389/fendo.2024.1348465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are an ancient family of signal transducers that are both abundant and consequential in metazoan endocrinology. The evolutionary history and function of the GPCRs of the decapod superfamilies of gonadotropin-releasing hormone (GnRH) are yet to be fully elucidated. As part of which, the use of traditional phylogenetics and the recycling of a diminutive set of mis-annotated databases has proven insufficient. To address this, we have collated and revised eight existing and three novel GPCR repertoires for GnRH of decapod species. We developed a novel bioinformatic workflow that included clustering analysis to capture likely GnRH receptor-like proteins, followed by phylogenetic analysis of the seven transmembrane-spanning domains. A high degree of conservation of the sequences and topology of the domains and motifs allowed the identification of species-specific variation (up to ~70%, especially in the extracellular loops) that is thought to be influential to ligand-binding and function. Given the key functional role of the DRY motif across GPCRs, the classification of receptors based on the variation of this motif can be universally applied to resolve cryptic GPCR families, as was achieved in this work. Our results contribute to the resolution of the evolutionary history of invertebrate GnRH receptors and inform the design of bioassays in their deorphanization and functional annotation.
Collapse
Affiliation(s)
- Sean J. Buckley
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Tuan Viet Nguyen
- Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, Australia
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Quinn P. Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS, Australia
| | - Gregory S. Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS, Australia
| | - Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
6
|
Dani R, Pawloski W, Chaurasiya DK, Srilatha NS, Agarwal S, Fushman D, Naganathan AN. Conformational Tuning Shapes the Balance between Functional Promiscuity and Specialization in Paralogous Plasmodium Acyl-CoA Binding Proteins. Biochemistry 2023; 62:2982-2996. [PMID: 37788430 PMCID: PMC10774088 DOI: 10.1021/acs.biochem.3c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Paralogous proteins confer enhanced fitness to organisms via complex sequence-conformation codes that shape functional divergence, specialization, or promiscuity. Here, we dissect the underlying mechanism of promiscuous binding versus partial subfunctionalization in paralogues by studying structurally identical acyl-CoA binding proteins (ACBPs) from Plasmodium falciparum that serve as promising drug targets due to their high expression during the protozoan proliferative phase. Combining spectroscopic measurements, solution NMR, SPR, and simulations on two of the paralogues, A16 and A749, we show that minor sequence differences shape nearly every local and global conformational feature. A749 displays a broader and heterogeneous native ensemble, weaker thermodynamic coupling and cooperativity, enhanced fluctuations, and a larger binding pocket volume compared to A16. Site-specific tryptophan probes signal a graded reduction in the sampling of substates in the holo form, which is particularly apparent in A749. The paralogues exhibit a spectrum of binding affinities to different acyl-CoAs with A749, the more promiscuous and hence the likely ancestor, binding 1000-fold stronger to lauroyl-CoA under physiological conditions. We thus demonstrate how minor sequence changes modulate the extent of long-range interactions and dynamics, effectively contributing to the molecular evolution of contrasting functional repertoires in paralogues.
Collapse
Affiliation(s)
- Rahul Dani
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Westley Pawloski
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Dhruv Kumar Chaurasiya
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Sonal Agarwal
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - David Fushman
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
7
|
Wang T, He X, Li M, Shao B, Liu TY. AIMD-Chig: Exploring the conformational space of a 166-atom protein Chignolin with ab initio molecular dynamics. Sci Data 2023; 10:549. [PMID: 37607915 PMCID: PMC10444755 DOI: 10.1038/s41597-023-02465-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Molecular dynamics (MD) simulations have revolutionized the modeling of biomolecular conformations and provided unprecedented insight into molecular interactions. Due to the prohibitive computational overheads of ab initio simulation for large biomolecules, dynamic modeling for proteins is generally constrained on force field with molecular mechanics, which suffers from low accuracy as well as ignores the electronic effects. Here, we report AIMD-Chig, an MD dataset including 2 million conformations of 166-atom protein Chignolin sampled at the density functional theory (DFT) level with 7,763,146 CPU hours. 10,000 conformations were initialized covering the whole conformational space of Chignolin, including folded, unfolded, and metastable states. Ab initio simulations were driven by M06-2X/6-31 G* with a Berendsen thermostat at 340 K. We reported coordinates, energies, and forces for each conformation. AIMD-Chig brings the DFT level conformational space exploration from small organic molecules to real-world proteins. It can serve as the benchmark for developing machine learning potentials for proteins and facilitate the exploration of protein dynamics with ab initio accuracy.
Collapse
Affiliation(s)
- Tong Wang
- Microsoft Research AI4Science, Beijing, China.
| | - Xinheng He
- Microsoft Research AI4Science, Beijing, China
- Work done during an internship at Microsoft Research AI4Science, Beijing, China
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research and, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyu Li
- Microsoft Research AI4Science, Beijing, China
- Work done during an internship at Microsoft Research AI4Science, Beijing, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bin Shao
- Microsoft Research AI4Science, Beijing, China.
| | - Tie-Yan Liu
- Microsoft Research AI4Science, Beijing, China
| |
Collapse
|