1
|
Wagner A, Hill A, Lemcoff T, Livne E, Avtalion N, Casati N, Kariuki BM, Graber ER, Harris KDM, Cruz-Cabeza AJ, Palmer BA. Rationalizing the Influence of Small-Molecule Dopants on Guanine Crystal Morphology. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8910-8919. [PMID: 39347467 PMCID: PMC11428123 DOI: 10.1021/acs.chemmater.4c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024]
Abstract
Many spectacular optical phenomena in animals are produced by reflective assemblies of guanine crystals. The crystals comprise planar H-bonded layers of π-stacked molecules with a high in-plane refractive index. By preferentially expressing the highly reflective π-stacked (100) crystal face and controlling its cross-sectional shape, organisms generate a diverse array of photonic superstructures. How is this precise control over crystal morphology achieved? Recently, it was found that biogenic guanine crystals are composites, containing high quantities of hypoxanthine and xanthine in a molecular alloy. Here, we crystallized guanine in the presence of these dopants and used computations to rationalize their influence on the crystal morphology and energy. Exceptional quantities of hypoxanthine are incorporated into kinetically favored solid solutions, indicating that fast crystallization kinetics underlies the heterogeneous compositions of biogenic guanine crystals. We find that weakening of H-bonding interactions by additive incorporation elongates guanine crystals along the stacking direction-the opposite morphology of biogenic crystals. However, by modulation of the strength of competing in-plane H-bonding interactions, additive incorporation strongly influences the cross-sectional shape of the crystals. Our results suggest that small-molecule H-bond disrupting additives may be simultaneously employed with π-stack blocking additives to generate reflective platelet crystal morphologies exhibited by organisms.
Collapse
Affiliation(s)
- Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| | - Adam Hill
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, U.K
- Department of Chemistry, University of Durham, Lower Mount Joy, South Road, Durham DH1 3LE, U.K
| | - Tali Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| | - Eynav Livne
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| | - Noam Avtalion
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| | - Nicola Casati
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Benson M Kariuki
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales, U.K
| | - Ellen R Graber
- Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, Rishon Letzion 7528809, Israel
| | | | - Aurora J Cruz-Cabeza
- Department of Chemistry, University of Durham, Lower Mount Joy, South Road, Durham DH1 3LE, U.K
| | - Benjamin A Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheba 8410501, Israel
| |
Collapse
|
2
|
Oluwatoba DS, Safoah HA, Do TD. The rise and fall of adenine clusters in the gas phase: a glimpse into crystal growth and nucleation. Anal Bioanal Chem 2024; 416:5037-5048. [PMID: 39031229 DOI: 10.1007/s00216-024-05442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
The emergence of a crystal nucleus from disordered states is a critical and challenging aspect of the crystallization process, primarily due to the extremely short length and timescales involved. Methods such as liquid-cell or low-dose focal-series transmission electron microscopy (TEM) are often employed to probe these events. In this study, we demonstrate that ion mobility spectrometry-mass spectrometry (IMS-MS) offers a complementary and insightful perspective on the nucleation process by examining the sizes and shapes of small clusters, specifically those ranging from n = 2 to 40. Our findings reveal the significant role of sulfate ions in the growth of adeninediium sulfate clusters, which are the precursors to the formation of single crystals. Specifically, sulfate ions stabilize adenine clusters at the 1:1 ratio. In contrast, guanine sulfate forms smaller clusters with varied ratios, which become stable as they approach the 1:2 ratio. The nucleation size is predicted to be between n = 8 and 14, correlating well with the unit cell dimensions of adenine crystals. This correlation suggests that IMS-MS can identify critical nucleation sizes and provide valuable structural information consistent with established crystallographic data. We also discuss the strengths and limitations of IMS-MS in this context. IMS-MS offers rapid and robust experimental protocols, making it a valuable tool for studying the effects of various additives on the assembly of small molecules. Additionally, it aids in elucidating nucleation processes and the growth of different crystal polymorphs.
Collapse
Affiliation(s)
| | - Happy Abena Safoah
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Deis R, Lerer-Goldshtein T, Baiko O, Eyal Z, Brenman-Begin D, Goldsmith M, Kaufmann S, Heinig U, Dong Y, Lushchekina S, Varsano N, Olender T, Kupervaser M, Porat Z, Levin-Zaidman S, Pinkas I, Mateus R, Gur D. Genetic control over biogenic crystal morphogenesis in zebrafish. Nat Chem Biol 2024:10.1038/s41589-024-01722-1. [PMID: 39215102 DOI: 10.1038/s41589-024-01722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Organisms evolve mechanisms that regulate the properties of biogenic crystals to support a wide range of functions, from vision and camouflage to communication and thermal regulation. Yet, the mechanism underlying the formation of diverse intracellular crystals remains enigmatic. Here we unravel the biochemical control over crystal morphogenesis in zebrafish iridophores. We show that the chemical composition of the crystals determines their shape, particularly through the ratio between the nucleobases guanine and hypoxanthine. We reveal that these variations in composition are genetically controlled through tissue-specific expression of specialized paralogs, which exhibit remarkable substrate selectivity. This orchestrated combination grants the organism with the capacity to generate a broad spectrum of crystal morphologies. Overall, our findings suggest a mechanism for the morphological and functional diversity of biogenic crystals and may, thus, inspire the development of genetically designed biomaterials and medical therapeutics.
Collapse
Affiliation(s)
- Rachael Deis
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Olha Baiko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Eyal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dolev Brenman-Begin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sylvia Kaufmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Uwe Heinig
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghui Dong
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sofya Lushchekina
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Rita Mateus
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Dvir Gur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Blumer MJ, Surapaneni VA, Ciecierska-Holmes J, Redl S, Pechriggl EJ, Mollen FH, Dean MN. Intermediate filaments spatially organize intracellular nanostructures to produce the bright structural blue of ribbontail stingrays across ontogeny. Front Cell Dev Biol 2024; 12:1393237. [PMID: 39050893 PMCID: PMC11266302 DOI: 10.3389/fcell.2024.1393237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
In animals, pigments but also nanostructures determine skin coloration, and many shades are produced by combining both mechanisms. Recently, we discovered a new mechanism for blue coloration in the ribbontail stingray Taeniura lymma, a species with electric blue spots on its yellow-brown skin. Here, we characterize finescale differences in cell composition and architecture distinguishing blue from non-blue regions, the first description of elasmobranch chromatophores and the nanostructures responsible for the stingray's novel structural blue, contrasting with other known mechanisms for making nature's rarest color. In blue regions, the upper dermis comprised a layer of chromatophore units -iridophores and melanophores entwined in compact clusters framed by collagen bundles- this structural stability perhaps the root of the skin color's robustness. Stingray iridophores were notably different from other vertebrate light-reflecting cells in having numerous fingerlike processes, which surrounded nearby melanophores like fists clenching a black stone. Iridophores contained spherical iridosomes enclosing guanine nanocrystals, suspended in a 3D quasi-order, linked by a cytoskeleton of intermediate filaments. We argue that intermediate filaments form a structural scaffold with a distinct optical role, providing the iridosome spacing critical to produce the blue color. In contrast, black-pigmented melanosomes within melanophores showed space-efficient packing, consistent with their hypothesized role as broadband-absorbers for enhancing blue color saturation. The chromatophore layer's ultrastructure was similar in juvenile and adult animals, indicating that skin color and perhaps its ecological role are likely consistent through ontogeny. In non-blue areas, iridophores were replaced by pale cells, resembling iridophores in some morphological and nanoscale features, but lacking guanine crystals, suggesting that the cell types arise from a common progenitor cell. The particular cellular associations and structural interactions we demonstrate in stingray skin suggest that pigment cells induce differentiation in the progenitor cells of iridophores, and that some features driving color production may be shared with bony fishes, although the lineages diverged hundreds of millions of years ago and the iridophores themselves differ drastically.
Collapse
Affiliation(s)
- Michael J. Blumer
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Venkata A. Surapaneni
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jana Ciecierska-Holmes
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Stefan Redl
- Institute of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Elisabeth J. Pechriggl
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, Innsbruck, Austria
| | | | - Mason N. Dean
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
5
|
Niazov-Elkan A, Shepelenko M, Alus L, Kazes M, Houben L, Rechav K, Leitus G, Kossoy A, Feldman Y, Kronik L, Vekilov PG, Oron D. Surface-Guided Crystallization of Xanthine Derivatives for Optical Metamaterial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306996. [PMID: 38031346 DOI: 10.1002/adma.202306996] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Numerous bio-organisms employ template-assisted crystallization of molecular solids to yield crystal morphologies with unique optical properties that are difficult to reproduce synthetically. Here, a facile procedure is presented to deposit bio-inspired birefringent crystals of xanthine derivatives on a template of single-crystal quartz. Crystalline sheets that are several millimeters in length, several hundred micrometers in width, and 300-600 nm thick, are obtained. The crystal sheets are characterized with a well-defined orientation both in and out of the substrate plane, giving rise to high optical anisotropy in the plane parallel to the quartz surface, with a refractive index difference Δn ≈ 0.25 and a refractive index along the slow axis of n ≈ 1.7. It is further shown that patterning of the crystalline stripes with a tailored periodic grating leads to a thin organic polarization-dependent diffractive meta-surface, opening the door to the fabrication of various optical devices from a platform of small-molecule based organic dielectric crystals.
Collapse
Affiliation(s)
- Angelica Niazov-Elkan
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd, Houston, TX, 77204-4004, USA
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX, 77204-5003, USA
| | - Margarita Shepelenko
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lotem Alus
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Miri Kazes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Gregory Leitus
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anna Kossoy
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd, Houston, TX, 77204-4004, USA
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX, 77204-5003, USA
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
6
|
Hu H, Xue R, Chen F. Biomineralization and Properties of Guanine Crystals. Molecules 2023; 28:6138. [PMID: 37630390 PMCID: PMC10459440 DOI: 10.3390/molecules28166138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Guanine crystals with unique optical properties in organisms have been extensively studied and the biomineralization principles of guanine are being established. This review summarizes the fundamental physicochemical properties (solubility, tautomers, bands, and refractivity), polymorphs, morphology of biological and synthetic forms, and the reported biomineralization principles of guanine (selective recrystallization of amorphous precursor, preassembled scaffolds, additives, twinning, hypoxanthine doping, fluorescence, and assembly). The biomineralization principles of guanine will be helpful for the synthesis of guanine crystals with excellent properties and the design of functional organic materials for drugs, dyes, organic semiconductors, etc.
Collapse
Affiliation(s)
- Haoxin Hu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China;
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Rongrong Xue
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Fenghua Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China
| |
Collapse
|