1
|
Zheng A, Vermeulen BJA, Würtz M, Neuner A, Lübbehusen N, Mayer MP, Schiebel E, Pfeffer S. Structural insights into the interplay between microtubule polymerases, γ-tubulin complexes and their receptors. Nat Commun 2025; 16:402. [PMID: 39757296 DOI: 10.1038/s41467-024-55778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025] Open
Abstract
The γ-tubulin ring complex (γ-TuRC) is a structural template for controlled nucleation of microtubules from α/β-tubulin heterodimers. At the cytoplasmic side of the yeast spindle pole body, the CM1-containing receptor protein Spc72 promotes γ-TuRC assembly from seven γ-tubulin small complexes (γ-TuSCs) and recruits the microtubule polymerase Stu2, yet their molecular interplay remains unclear. Here, we determine the cryo-EM structure of the Candida albicans cytoplasmic nucleation unit at 3.6 Å resolution, revealing how the γ-TuRC is assembled and conformationally primed for microtubule nucleation by the dimerised Spc72 CM1 motif. Two coiled-coil regions of Spc72 interact with the conserved C-terminal α-helix of Stu2 and thereby position the α/β-tubulin-binding TOG domains of Stu2 in the vicinity of the microtubule assembly site. Collectively, we reveal the function of CM1 motifs in γ-TuSC oligomerisation and the recruitment of microtubule polymerases to the γ-TuRC.
Collapse
Affiliation(s)
- Anjun Zheng
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Bram J A Vermeulen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg Meyerhofstraße 1, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Nicole Lübbehusen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.
| |
Collapse
|
2
|
Serna M, Zimmermann F, Vineethakumari C, Gonzalez-Rodriguez N, Llorca O, Lüders J. CDK5RAP2 activates microtubule nucleator γTuRC by facilitating template formation and actin release. Dev Cell 2024; 59:3175-3188.e8. [PMID: 39321809 DOI: 10.1016/j.devcel.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
To organize microtubules, cells tightly control the activity of the microtubule nucleator γ-tubulin ring complex (γTuRC). The open ring-shaped γTuRC was proposed to nucleate microtubules by a template mechanism. However, its splayed structure does not match microtubule symmetry, leaving it unclear how γTuRC becomes an efficient nucleator. Here, we identify the mechanism of γTuRC activation by CDK5RAP2 centrosomin motif 1 (CM1). Using cryoelectron microscopy (cryo-EM), we find that activation involves binding of multiple CM1 dimers to five distinct sites around the outside of the γTuRC cone, which crucially depends on regulatory modules formed by MZT2 and the N-terminal extensions of GCP2 subunits. CM1 binding promotes lateral interactions between GCP subunits to facilitate microtubule-like conformations and release of luminal actin that is integral to non-activated γTuRC. We propose a model where generation of γTuRC with an expanded conformational range, rather than perfect symmetry, is sufficient to boost nucleation activity.
Collapse
Affiliation(s)
- Marina Serna
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Fabian Zimmermann
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Chithran Vineethakumari
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Nayim Gonzalez-Rodriguez
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Gao Q, Vermeulen BJA, Würtz M, Shin H, Erdogdu D, Zheng A, Hofer FW, Neuner A, Pfeffer S, Schiebel E. The structure of the γ-TuRC at the microtubule minus end - not just one solution. Bioessays 2024; 46:e2400117. [PMID: 39044599 DOI: 10.1002/bies.202400117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
In cells, microtubules (MTs) assemble from α/β-tubulin subunits at nucleation sites containing the γ-tubulin ring complex (γ-TuRC). Within the γ-TuRC, exposed γ-tubulin molecules act as templates for MT assembly by interacting with α/β-tubulin. The vertebrate γ-TuRC is scaffolded by γ-tubulin-interacting proteins GCP2-6 arranged in a specific order. Interestingly, the γ-tubulin molecules in the γ-TuRC deviate from the cylindrical geometry of MTs, raising the question of how the γ-TuRC structure changes during MT nucleation. Recent studies on the structure of the vertebrate γ-TuRC attached to the end of MTs came to varying conclusions. In vitro assembly of MTs, facilitated by an α-tubulin mutant, resulted in a closed, cylindrical γ-TuRC showing canonical interactions between all γ-tubulin molecules and α/β-tubulin subunits. Conversely, native MTs formed in a frog extract were capped by a partially closed γ-TuRC, with some γ-tubulin molecules failing to align with α/β-tubulin. This review discusses these outcomes, along with the broader implications.
Collapse
Affiliation(s)
- Qi Gao
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Bram J A Vermeulen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Hyesu Shin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Dilara Erdogdu
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Anjun Zheng
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Florian W Hofer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| |
Collapse
|
4
|
Thomas A, Meraldi P. Centrosome age breaks spindle size symmetry even in cells thought to divide symmetrically. J Cell Biol 2024; 223:e202311153. [PMID: 39012627 PMCID: PMC11252449 DOI: 10.1083/jcb.202311153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 07/17/2024] Open
Abstract
Centrosomes are the main microtubule-organizing centers in animal cells. Due to the semiconservative nature of centrosome duplication, the two centrosomes differ in age. In asymmetric stem cell divisions, centrosome age can induce an asymmetry in half-spindle lengths. However, whether centrosome age affects the symmetry of the two half-spindles in tissue culture cells thought to divide symmetrically is unknown. Here, we show that in human epithelial and fibroblastic cell lines centrosome age imposes a mild spindle asymmetry that leads to asymmetric cell daughter sizes. At the mechanistic level, we show that this asymmetry depends on a cenexin-bound pool of the mitotic kinase Plk1, which favors the preferential accumulation on old centrosomes of the microtubule nucleation-organizing proteins pericentrin, γ-tubulin, and Cdk5Rap2, and microtubule regulators TPX2 and ch-TOG. Consistently, we find that old centrosomes have a higher microtubule nucleation capacity. We postulate that centrosome age breaks spindle size symmetry via microtubule nucleation even in cells thought to divide symmetrically.
Collapse
Affiliation(s)
- Alexandre Thomas
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Dendooven T, Yatskevich S, Burt A, Chen ZA, Bellini D, Rappsilber J, Kilmartin JV, Barford D. Structure of the native γ-tubulin ring complex capping spindle microtubules. Nat Struct Mol Biol 2024; 31:1134-1144. [PMID: 38609662 PMCID: PMC11257966 DOI: 10.1038/s41594-024-01281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Microtubule (MT) filaments, composed of α/β-tubulin dimers, are fundamental to cellular architecture, function and organismal development. They are nucleated from MT organizing centers by the evolutionarily conserved γ-tubulin ring complex (γTuRC). However, the molecular mechanism of nucleation remains elusive. Here we used cryo-electron tomography to determine the structure of the native γTuRC capping the minus end of a MT in the context of enriched budding yeast spindles. In our structure, γTuRC presents a ring of γ-tubulin subunits to seed nucleation of exclusively 13-protofilament MTs, adopting an active closed conformation to function as a perfect geometric template for MT nucleation. Our cryo-electron tomography reconstruction revealed that a coiled-coil protein staples the first row of α/β-tubulin of the MT to alternating positions along the γ-tubulin ring of γTuRC. This positioning of α/β-tubulin onto γTuRC suggests a role for the coiled-coil protein in augmenting γTuRC-mediated MT nucleation. Based on our results, we describe a molecular model for budding yeast γTuRC activation and MT nucleation.
Collapse
Affiliation(s)
| | - Stanislau Yatskevich
- MRC Laboratory of Molecular Biology, Cambridge, UK.
- Genentech, South San Francisco, CA, USA.
| | - Alister Burt
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| | - Zhuo A Chen
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité, Universitätsmedizin Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
6
|
Meyer-Gerards C, Bazzi H. Developmental and tissue-specific roles of mammalian centrosomes. FEBS J 2024. [PMID: 38935637 DOI: 10.1111/febs.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Centrosomes are dominant microtubule organizing centers in animal cells with a pair of centrioles at their core. They template cilia during interphase and help organize the mitotic spindle for a more efficient cell division. Here, we review the roles of centrosomes in the early developing mouse and during organ formation. Mammalian cells respond to centrosome loss-of-function by activating the mitotic surveillance pathway, a timing mechanism that, when a defined mitotic duration is exceeded, leads to p53-dependent cell death in the descendants. Mouse embryos without centrioles are highly susceptible to this pathway and undergo embryonic arrest at mid-gestation. The complete loss of the centriolar core results in earlier and more severe phenotypes than that of other centrosomal proteins. Finally, different developing tissues possess varying thresholds and mount graded responses to the loss of centrioles that go beyond the germ layer of origin.
Collapse
Affiliation(s)
- Charlotte Meyer-Gerards
- Department of Cell Biology of the Skin, Medical Faculty, University of Cologne, Germany
- Department of Dermatology and Venereology, Medical Faculty, University of Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Germany
- Graduate School for Biological Sciences, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Germany
| | - Hisham Bazzi
- Department of Cell Biology of the Skin, Medical Faculty, University of Cologne, Germany
- Department of Dermatology and Venereology, Medical Faculty, University of Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Germany
| |
Collapse
|
7
|
McManus CT, Travis SM, Jeffrey PD, Zhang R, Petry S. Mechanism of how the universal module XMAP215 γ-TuRC nucleates microtubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597159. [PMID: 38895418 PMCID: PMC11185565 DOI: 10.1101/2024.06.03.597159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
It has become increasingly evident in recent years that nucleation of microtubules from a diverse set of MTOCs requires both the γ-tubulin ring complex (γ-TuRC) and the microtubule polymerase XMAP215. Despite their essentiality, little is known about how these nucleation factors interact and work together to generate microtubules. Using biochemical domain analysis of XMAP215 and structural approaches, we find that a sixth TOG domain in XMAP215 binds γ-TuRC via γ-tubulin as part of a broader interaction involving the C-terminal region. Moreover, TOG6 is required for XMAP215 to promote nucleation from γ-TuRC to its full extent. Interestingly, we find that XMAP215 also depends strongly on TOG5 for microtubule lattice binding and nucleation. Accordingly, we report a cryo-EM structure of TOG5 bound to the microtubule lattice that reveals promotion of lateral interactions between tubulin dimers. Finally, we find that while XMAP215 constructs' effects on nucleation are generally proportional to their effects on polymerization, formation of a direct complex with γ-TuRC allows cooperative nucleation activity. Thus, we propose that XMAP215's C-terminal TOGs 5 and 6 play key roles in promoting nucleation by promoting formation of longitudinal and lateral bonds in γ-TuRC templated nascent microtubules at cellular MTOCs.
Collapse
Affiliation(s)
- Collin T. McManus
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sophie M. Travis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Philip D. Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine (St. Louis, Missouri, United States)
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
8
|
Rai D, Song Y, Hua S, Stecker K, Monster JL, Yin V, Stucchi R, Xu Y, Zhang Y, Chen F, Katrukha EA, Altelaar M, Heck AJR, Wieczorek M, Jiang K, Akhmanova A. CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC. Nat Cell Biol 2024; 26:404-420. [PMID: 38424271 PMCID: PMC10940162 DOI: 10.1038/s41556-024-01366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
γ-Tubulin ring complex (γ-TuRC) is the major microtubule-nucleating factor. After nucleation, microtubules can be released from γ-TuRC and stabilized by other proteins, such as CAMSAPs, but the biochemical cross-talk between minus-end regulation pathways is poorly understood. Here we reconstituted this process in vitro using purified components. We found that all CAMSAPs could bind to the minus ends of γ-TuRC-attached microtubules. CAMSAP2 and CAMSAP3, which decorate and stabilize growing minus ends but not the minus-end tracking protein CAMSAP1, induced microtubule release from γ-TuRC. CDK5RAP2, a γ-TuRC-interactor, and CLASP2, a regulator of microtubule growth, strongly stimulated γ-TuRC-dependent microtubule nucleation, but only CDK5RAP2 suppressed CAMSAP binding to γ-TuRC-anchored minus ends and their release. CDK5RAP2 also improved selectivity of γ-tubulin-containing complexes for 13- rather than 14-protofilament microtubules in microtubule-capping assays. Knockout and overexpression experiments in cells showed that CDK5RAP2 inhibits the formation of CAMSAP2-bound microtubules detached from the microtubule-organizing centre. We conclude that CAMSAPs can release newly nucleated microtubules from γ-TuRC, whereas nucleation-promoting factors can differentially regulate this process.
Collapse
Affiliation(s)
- Dipti Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Yinlong Song
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Shasha Hua
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kelly Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Jooske L Monster
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Yixin Xu
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Yaqian Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Fangrui Chen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Michal Wieczorek
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Kai Jiang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Brito C, Serna M, Guerra P, Llorca O, Surrey T. Transition of human γ-tubulin ring complex into a closed conformation during microtubule nucleation. Science 2024; 383:870-876. [PMID: 38305685 DOI: 10.1126/science.adk6160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Microtubules are essential for intracellular organization and chromosome segregation. They are nucleated by the γ-tubulin ring complex (γTuRC). However, isolated vertebrate γTuRC adopts an open conformation that deviates from the microtubule structure, raising the question of the nucleation mechanism. In this study, we determined cryo-electron microscopy structures of human γTuRC bound to a nascent microtubule. Structural changes of the complex into a closed conformation ensure that γTuRC templates the 13-protofilament microtubules that exist in human cells. Closure is mediated by a latch that interacts with incorporating tubulin, making it part of the closing mechanism. Further rearrangements involve all γTuRC subunits and the removal of the actin-containing luminal bridge. Our proposed mechanism of microtubule nucleation by human γTuRC relies on large-scale structural changes that are likely the target of regulation in cells.
Collapse
Affiliation(s)
- Cláudia Brito
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marina Serna
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pablo Guerra
- Cryo-Electron Microscopy Platform-IBMB CSIC, Joint Electron Microscopy Center at ALBA (JEMCA), Barcelona, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
10
|
Camblor-Perujo S, Ozer Yildiz E, Küpper H, Overhoff M, Rastogi S, Bazzi H, Kononenko NL. The AP-2 complex interacts with γ-TuRC and regulates the proliferative capacity of neural progenitors. Life Sci Alliance 2024; 7:e202302029. [PMID: 38086550 PMCID: PMC10716017 DOI: 10.26508/lsa.202302029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Centrosomes are organelles that nucleate microtubules via the activity of gamma-tubulin ring complexes (γ-TuRC). In the developing brain, centrosome integrity is central to the progression of the neural progenitor cell cycle, and its loss leads to microcephaly. We show that NPCs maintain centrosome integrity via the endocytic adaptor protein complex-2 (AP-2). NPCs lacking AP-2 exhibit defects in centrosome formation and mitotic progression, accompanied by DNA damage and accumulation of p53. This function of AP-2 in regulating the proliferative capacity of NPCs is independent of its role in clathrin-mediated endocytosis and is coupled to its association with the GCP2, GCP3, and GCP4 components of γ-TuRC. We find that AP-2 maintains γ-TuRC organization and regulates centrosome function at the level of MT nucleation. Taken together, our data reveal a novel, noncanonical function of AP-2 in regulating the proliferative capacity of NPCs and open new avenues for the identification of novel therapeutic strategies for the treatment of neurodevelopmental and neurodegenerative disorders with AP-2 complex dysfunction.
Collapse
Affiliation(s)
| | - Ebru Ozer Yildiz
- CECAD Excellence Center, University of Cologne, Cologne, Germany
| | - Hanna Küpper
- CECAD Excellence Center, University of Cologne, Cologne, Germany
| | - Melina Overhoff
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Saumya Rastogi
- CECAD Excellence Center, University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, Natural Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|