1
|
Ji T, Wang C, Han Y, Liu Q, Li L, Zhao R, Han J, Wang L. Hollow dodecahedral Zn 0.3Cd 0.7S@NiCo-mixed metal oxide p-n heterojunction with high-efficiency photocatalytic hydrogen production activity. J Colloid Interface Sci 2025; 677:922-932. [PMID: 39178671 DOI: 10.1016/j.jcis.2024.08.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The growing demand for clean and sustainable energy has driven extensive research into efficient photocatalysts for hydrogen production. However, many semiconductor photocatalysts in this field still face the challenges such as wide band gap, limited visible light absorption, and inefficient separation and transport of photoinduced charges. In this study, nickel-cobalt layered double hydroxide (NiCo-LDH) was synthesized using an "etch-and-grow" method with zeolitic imidazolate framework-67 (ZIF-67) as a sacrificial template, followed by high-temperature calcination to produce nickel-cobalt mixed metal oxide (NiCo-MMO). Zn0.3Cd0.7S quantum dots were used to modify NiCo-MMO resulting in a hollow dodecahedral Zn0.3Cd0.7S@NiCo-MMO composite photocatalyst. In hydrogen production performance test, the optimized Zn0.3Cd0.7S@NiCo-MMO exhibited excellent performance (8177.5 μmol·g-1·h-1) and demonstrated good cycling stability. The hollow dodecahedral structure of the Zn0.3Cd0.7S@NiCo-MMO enhanced the light trapping ability and provided large surface area. The p-n heterojunction formed within Zn0.3Cd0.7S@NiCo-MMO accelerated carrier separation and transfer, effectively inhibited the recombination of photogenerated electrons and holes, and significantly improved the hydrogen production activity.
Collapse
Affiliation(s)
- Tingting Ji
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Changdi Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuchen Han
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lu Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruiyang Zhao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jishu Han
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Peng Y, Rabeah J, Junge H, Beller M. A Protocol for Unveiling the Nature of Photocatalytic Hydrogen Evolution Reactions: True Water Splitting or Sacrificial Reagent Acceptorless Dehydrogenation? Angew Chem Int Ed Engl 2024; 63:e202408626. [PMID: 39533522 DOI: 10.1002/anie.202408626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Indexed: 11/16/2024]
Abstract
Photocatalytic water splitting for hydrogen evolution is a highly topical subject in academic research and a promising approach for sustainable fuel production from solar energy. Due to the mismatched energy diagram of the photosensitizer (especially semiconductor-based materials where band-edge engineering is not trivial) and the redox potential of the half-reactions of water splitting, photocatalytic H2 generation from water splitting is usually accelerated by the addition of hole scavengers, i.e. sacrificial reagents such as alcohols, amines, and thiols. However, the source of the protons of the evolved H2 is often neglected, and it is questionable whether such systems are really water splitting. Here, we discuss recent reports on sacrificial reagent-assisted photocatalytic water splitting and present our recent findings, which showcase that the sacrificial reagent in the investigated photocatalytic water splitting systems inherently undergoes acceptorless dehydrogenation, with H2O serving as the proton shuttle, the amount of which doesn't change during the course of the reaction.
Collapse
Affiliation(s)
- Yong Peng
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
3
|
Wu Y, Wang R, Kim Y. Single-Atom Catalysts on Covalent Organic Frameworks for Energy Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66874-66899. [PMID: 38329718 DOI: 10.1021/acsami.3c17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Single-atom catalysts (SACs) have been investigated and applied to energy conversion devices. However, issues of metal agglomeration, low metal loading, and substrate stability have hindered realization of the SACs' full potential. Recently, covalent organic framework (COF)-based SACs have emerged as promising materials to enable highly efficient catalytic reactions. Here, we summarize the representative COF-based SACs and their wide application in clean energy devices and conversion reactions, such as hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, and oxygen evolution reaction. Based on their catalysis conditions, these reactions are categorized into photocatalyzed and electrocatalyzed reactions. We also summarize their design strategies, including heteroatom inclusion, donor-acceptor pairs, pore engineering, interface engineering, etc. Although COF-based SACs are promising, more efforts, such as linkage engineering, functional groups, ionization, multifunctional sites for cocatalyzed systems, etc., could improve them to be the ideal SAC materials. At the end, we provide our perspectives on where the field will proceed in the next 5 years.
Collapse
Affiliation(s)
- Yurong Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| |
Collapse
|
4
|
Liu D, Li K, Su X, Li Z, Tian Y, Zhang Y, Liu B, Yue G, Tian Y, Xiong X. Fluorination-mediated polarization engineering in block copolymers for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 683:111-121. [PMID: 39673924 DOI: 10.1016/j.jcis.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Porous polymers have emerged as promising candidates for photocatalytic hydrogen evolution, but their structural rigidity and crosslinking pose significant challenges, often leading to charge recombination and inadequate water/polymer interfaces. This study introduces novel block copolymers (BCPs) comprising a rigid pyrene core and various fluorinated benzene structures coupled with flexible diethyl ether-based hydrophilic units. By computationally predicting monomer structures and dipoles, the relationship between structure and function in these BCPs is examined, particularly focusing on local charge delocalization. Four fluorinated block copolymers (F-BCPs), sharing identical π-conjugated skeletons but differing in the positions and quantities of fluorine atoms on the benzene rings, are explored. Experimental and theoretical analyses reveal that fine-tuning fluorination induces local charge polarization and delocalization. Notably, Py-DE-2F, with fluorination at two ortho positions on benzene, exhibits a remarkable hydrogen evolution rate of 77.68 μmol/h under visible light (λ > 420 nm) without any co-catalyst, surpassing other F-BCPs by an order of magnitude. These results underscore the potential of utilizing fluorination-mediated polarization engineering for developing advanced metal-free polymer photocatalysts.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Keming Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Su
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhanfeng Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yanting Tian
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongjia Zhang
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Baoyou Liu
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd., Yinchuan 750003, China
| | - Gang Yue
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd., Yinchuan 750003, China
| | - Yue Tian
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xianqiang Xiong
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China.
| |
Collapse
|
5
|
Zhang C, Cao D, Cao J, Song Y, Zheng Y, Luo L, Liu J, Yuan Y. Fine-Tune the Structural Components of Porous Frameworks for Photocatalytic Hydrogen Production. Chemistry 2024:e202403733. [PMID: 39639833 DOI: 10.1002/chem.202403733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/07/2024]
Abstract
With the depletion of fossil fuels and increasing pollution problems, green and sustainable energy supply attracts worldwide attention. Hydrogen is a green and high-density energy substance, and photocatalytic hydrogen generation is an effective and sustainable method. Therefore, developing high-performance photocatalysts plays a crucial role in practical application. Porous frameworks with large surface areas and diversified structures are considered promising candidates for photocatalysts. This review summarizes the recent progress on porous frameworks and their derivatives through fine-tuning structural components in terms of building monomers, functional groups, and metal hybridization for photocatalytic production of hydrogen. A detailed correlation is conducted between the structural features of porous frameworks and photocatalysis capability. In addition, we summarized the advantages of porous materials for photocatalytic hydrogen production and future development.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun, 130012, China
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Doudou Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiarui Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yingbo Song
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yue Zheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Lu Luo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jia Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun, 130012, China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
6
|
Chen L, Chen G, Gong C, Zhang Y, Xing Z, Li J, Xu G, Li G, Peng Y. Low-valence platinum single atoms in sulfur-containing covalent organic frameworks for photocatalytic hydrogen evolution. Nat Commun 2024; 15:10501. [PMID: 39627232 PMCID: PMC11614902 DOI: 10.1038/s41467-024-54959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
This study focuses on optimizing catalytic activity in photocatalytic hydrogen evolution reaction by precisely designing and modulating the electronic structure of metal single atoms. The catalyst, denoted as PtSA@S-TFPT, integrates low-valence platinum single atoms into sulfur-containing covalent organic frameworks. The robust asymmetric four-coordination between sulfur and platinum within the framework enables a high platinum loading of 12.1 wt%, resulting in efficient photocatalytic hydrogen production activity of 11.4 mmol g-1 h-1 and stable performance under visible light. These outcomes are attributed to a reduced hydrogen desorption barrier and enhanced photogenerated charge separation, as indicated by density functional theory calculations and dynamic carrier analysis. This work challenges traditional notions and opens an avenue for developing low-valence metal single atom-loaded covalent organic framework catalysts to advance photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Liangjun Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Guinan Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, China
| | - Zhihao Xing
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiahao Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Guodong Xu
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Gao Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Sun K, Qian Y, Li D, Jiang HL. Reticular Materials for Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411118. [PMID: 39601158 DOI: 10.1002/adma.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Photocatalysis leverages solar energy to overcome the thermodynamic barrier, enabling efficient chemical reactions under mild conditions. It can greatly reduce reliance on traditional energy sources and has attracted significant research interest. Reticular materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), represent a class of crystalline materials constructed from molecular building blocks linked by coordination and covalent bonds, respectively. Reticular materials function as heterogeneous catalysts, combining well-defined structures and high tailorability akin to homogeneous catalysts. In this review, the regulation of light absorption, charge separation, and surface reactions in the photocatalytic process through precise molecular-level design based on the features of reticular materials is elaborated. Notably, for MOFsmicroenvironment modulation around catalytic sites affects photocatalytic performance is delved, with emphasis on their unique dynamic and flexible microenvironments. For COFs, the inherent excitonic effects due to their fully organic nature is discussed and highlight the strategies to regulate excitonic effects for charge- and/or energy-transfer-mediated photocatalysis. Finally, the current challenges and future directions in this field, aiming to provide a comprehensive understanding of how reticular materials can be optimized for enhanced photocatalysis is discussed.
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
8
|
Yang Y, Peng S, Chen S, Kang F, Fan J, Zhang H, Yu X, Li J, Zhang Q. Pyrene-based covalent organic frameworks (PyCOFs): a review. NANOSCALE HORIZONS 2024; 9:2198-2233. [PMID: 39355898 DOI: 10.1039/d4nh00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Recently, pyrene-based covalent organic frameworks (PyCOFs) have aroused great interest because the large planar structure of the pyrene unit could effectively enhance the interlayer π-π interaction and promote the separation and migration of carriers, significantly improving the crystallinity and photoelectrical properties of PyCOFs. Since the first PyCOF-containing boroxate linkage was reported in 2008 by the Yaghi group, many PyCOFs with different kinds of linkages have been reported, exhibiting great potential applications in different fields such as adsorption/separation, chemical sensing, catalysis, energy storage, etc. However, as far as we know, the reviews related to PyCOFs are rare, although PyCOFs have been widely reported to show promising applications. Thus, it is right time and important for us to systematically summarize the research advance in PyCOFs, including the synthesis with different linkages and applications. Moreover, the prospects and obstacles facing the development of PyCOFs are discussed. We hope that this review will provide new insights into PyCOFs that can be explored for more attractive functions or applications.
Collapse
Affiliation(s)
- Yao Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Shiqiong Peng
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, China
| | - Songhua Chen
- College of Chemistry and Material, Longyan University, Longyan 364000, China.
| | - Fangyuan Kang
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, 999077 Hong Kong, China.
| | - Jun Fan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Huan Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Xianglin Yu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, 999077 Hong Kong, China.
| |
Collapse
|
9
|
Xie S, Liu R, Liu N, Xu H, Chen X, Wang X, Jiang D. Vertically Expanded Covalent Organic Frameworks for Photocatalytic Water Oxidation into Oxygen. Angew Chem Int Ed Engl 2024:e202416771. [PMID: 39502043 DOI: 10.1002/anie.202416771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 11/21/2024]
Abstract
Covalent organic frameworks with unique π architectures and pores could be developed as photocatalysts for transformations. However, they usually form π-stacking layers, so that only surface layers function in photocatalysis. Here we report a strategy for developing vertically expanded frameworks to expose originally inaccessible active sites hidden in layers to catalysis. We designed covalently linked two-dimensional cobalt(II) porphyrin layers and explored coordination bonds to connect the cobalt(II) porphyrin layers with bidentate ligands via a three-component one-pot polymerization. The resultant frameworks expand the interlayer space greatly, where both the up and down faces of each cobalt(II) porphyrin layer are exposed to reactants. Unexpectedly, the vertically expanded frameworks increase skeleton oxidation potentials, decrease exciton dissociation energy, improve pore hydrophilicity and affinity to water, and facilitate water delivery. Remarkably, these positive effects work collectively in the photocatalysis of water oxidation into oxygen, with an oxygen production rate of 1155 μmol g-1 h-1, a quantum efficiency of 1.24 % at 450 nm, and a turnover frequency of 1.39 h-1, which is even 5.1-fold as high as that of the π-stacked frameworks and ranks them the most effective photocatalysts. This strategy offers a new platform for designing layer frameworks to build various catalytic systems for chemical transformations.
Collapse
Affiliation(s)
- Shuailei Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai NewCity, Fuzhou, 350207, China
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Nengyi Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Hetao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Donglin Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai NewCity, Fuzhou, 350207, China
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
10
|
Viquez ALM, Torres OS, Solís LFM. Analyzing the Total Attractive Force and Hydrogen Storage on Two-Dimensional MoP2 at Different Temperatures Using a First-Principles Molecular Dynamics Approach. Molecules 2024; 29:5228. [PMID: 39598617 PMCID: PMC11596209 DOI: 10.3390/molecules29225228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
We performed first-principle molecular dynamics (FPMD) calculations to test the total attraction force on a physisorbed molecule at a given temperature and ambient pressure and applied it to the hydrogen storage on the 2D material MoP2. We considered a pristine material and one with 12.5% of Mo vacancies. By optimization, we calculated a gravimetric capacity for pristine MoP2 of 5.72%, with an adsorption energy of -0.13 eV/molecule. We found 6.02% and -0.14 eV/molecule for the defective surface. Next, we applied our approach to determine if the molecular hydrogen physisorption obtained by simple energy optimization exists for a given temperature and ambient pressure. We used this approach to determine the number of molecules adsorbed on the surface at a given temperature. Thus, we conducted a FPMD calculation at temperature T1, using optimization as the initial system configuration. Subsequently, we performed a second FPMD calculation at a temperature T2 (with T2 << T1), using the steady configuration of the first FPMD calculation as the initial configuration. We identified as adsorbed molecules at temperature T1, only those forced back toward the surface at temperature T2 due to kinetic energy loss at the lower temperature. The defective surface gave the best gravimetric capacity, ranging from 5.27% at 300 K to 6.02% at 77 K. The latter met the requirement from the US-DOE, indicating the potential practical application of our research in hydrogen storage.
Collapse
Affiliation(s)
- Alma Lorena Marcos Viquez
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Mexico City 01000, Mexico;
| | - Osiris Salas Torres
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Avenida Instituto Politécnico Nacional, S/N, Mexico City 07340, Mexico;
| | - Luis Fernando Magaña Solís
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Mexico City 01000, Mexico;
| |
Collapse
|
11
|
Chen Y, Jiang D. Photocatalysis with Covalent Organic Frameworks. Acc Chem Res 2024; 57:3182-3193. [PMID: 39370855 DOI: 10.1021/acs.accounts.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
ConspectusUtilizing light to enable chemical conversions presents a green and sustainable approach to produce fuels and chemicals, and photocatalysis is one of the key chemical technologies that needs to be well developed in this century. Despite continuous progress in the advancement of various photocatalysts based on small inorganic and organic compounds, polymers, and networks, designing and constructing photocatalysts that combine activity, selectivity, and reusability remains a challenging goal. For catalytic activity, the difficulty originates from the complexity of photochemical reactions, where the light-harvesting system, multielectron and multihole-involving processes, and pinpoint mass delivery simultaneously need to be established in the system. For selectivity, the difficulty stems from the elaborate design of catalytic sites and space, especially their orbital energy levels, spatial arrangement, and environment; developing a molecular strategy that enables an overall design and control of these factors of different aspects is necessary yet arduous. For reusability, the difficulty arises from the stability and recyclability of the photocatalysts upon continuous operation under photoredox reaction conditions. How to recover photocatalysts in an energy-saving way to enable their cyclic use while retaining activity and selectivity is at the core of this problem. These bottleneck issues reflect that molecular design of a photocatalyst is not a simple summation of the above requirements, but a systematic scheme that can organically interlock various aspects is needed.To enable such an elaborate design and precise control, a basic requirement of the scaffold for constructing a promising photocatalyst is that its primary and high-order structures should be molecularly predesignable and synthetically controllable. Such a molecular regime has successfully evolved in natural photosynthesis, where light-harvesting chlorophyll antennae and photocatalytic centers are spatially well-organized and energetically well-defined to build ways for exciton migration, photoinduced electron transfer and charge separation, electron and hole flows, and oxidation of water and reduction of carbon dioxide, thereby converting water into oxygen to release ATP and NADPH via the light reaction and carbon dioxide into glucose with ATP and NADPH through the dark reaction. Similarly, a predesignable polymeric scaffold would be promising for integrating these complex photochemical processes to construct photocatalysts.Covalent organic frameworks (COFs) are a class of extended yet polymeric materials that enable the organization of organic units or metallo-organic moieties into well-defined architectures. In principle, COFs are molecularly designable with topology diagrams and synthetically controllable through polymerization reactions, offering an irreplaceable platform for designing and synthesizing photocatalysts. This feature enticed researchers to develop various photocatalysts based on COFs and drove the rapid progress in this field over the past decade. In this Account, we summarize the recent advances in the molecular design and synthetic control of COF photocatalysts, by highlighting the key achievements in developing ways to enable light harvesting, trigger photoinduced electron transfer and charge separation, allow charge carrier transport and mass delivery, control energy level, catalytic space, and environmental engineering, and develop stability and recyclability with an aim to reveal a full picture of this field. By scrutinizing typical photocatalytic reactions, we show the key problems to be addressed for COFs and predict future directions.
Collapse
Affiliation(s)
- Yongzhi Chen
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
12
|
Yin C, Ye X, Tao S, Zhao D, Zhi Y, Jiang D. Helicene Covalent Organic Frameworks for Robust Light Harvesting and Efficient Energy Transfers. Angew Chem Int Ed Engl 2024; 63:e202411558. [PMID: 39024117 DOI: 10.1002/anie.202411558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Helicenes represent a class of fascinating π compounds with fused yet folded backbones. Despite their broad structural diversity, harnessing helicenes to develop well-defined materials is still a formidable challenge. Here we report the synthesis of crystalline porous helicene materials by exploring helicenes to synthesize covalent 2D lattices and layered π frameworks. Topology-directed polymerization of [6]helicenes and porphyrin creates 2D covalent networks with alternate helicene-porphyrin alignment along the x and y directions at a 1.5-nm interval and develops [6]helicene frameworks through reversed anti-AA stack along the z direction to form segregated [6]helicene and porphyrin columnar π arrays. Notably, this π configuration enables the frameworks to be highly red luminescent with benchmark quantum yields. The [6]helicene frameworks trigger effieicnt intra-framework singlet-to-singlet state energy transfer from [6]helicene to porphyrin and facilitate intermolecular triplet-to-triplet state energy transfer from frameworks to molecular oxygen to produce reactive oxygen species, harvesting a wide range of photons from ultraviolet to near-infrared regions for light emitting and photo-to-chemical conversion. This study introduces a new family of extended frameworks, laying the groundwork for exploring well-defined helicene materials with unprecedented structures and functions.
Collapse
Affiliation(s)
- Cong Yin
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, Chinaa
| | - Xingyao Ye
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Dan Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongfeng Zhi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, Chinaa
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
13
|
Xu J, Zhao H, Yu X, Zou H, Hu J, Chen Z. Floating Photothermal Hydrogen Production. CHEMSUSCHEM 2024:e202401307. [PMID: 39176998 DOI: 10.1002/cssc.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Solar-to-hydrogen (STH) is emerging as a promising approach for energy storage and conversion to contribute to carbon neutrality. The lack of efficient catalysts and sustainable reaction systems is stimulating the fast development of photothermal hydrogen production based on floating carriers to achieve unprecedented STH efficiency. This technology involves three major components: floating carriers with hierarchically porous structures, photothermal materials for solar-to-heat conversion and photocatalysts for hydrogen production. Under solar irradiation, the floating photothermal system realizes steam generation which quickly diffuses to the active site for sustainable hydrogen generation with the assistance of a hierarchically porous structure. Additionally, this technology is endowed with advantages in the high utilization of solar energy and catalyst retention, making it suitable for various scenarios, including domestic water supply, wastewater treatment, and desalination. A comprehensive overview of the photothermal hydrogen production system is present due to the economic feasibility for industrial application. The in-depth mechanism of a floating photothermal system, including the solar-to-heat effect, steam diffusion, and triple-phase interaction are highlighted by elucidating the logical relationship among buoyant carriers, photothermal materials, and catalysts for hydrogen production. Finally, the challenges and new opportunities facing current photothermal catalytic hydrogen production systems are analyzed.
Collapse
Affiliation(s)
- Jian Xu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Heng Zhao
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Xinti Yu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2 N 1N4, Canada
| | - Haiyan Zou
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2 N 1N4, Canada
| | - Zhangxing Chen
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| |
Collapse
|
14
|
Liu Y, Yuan L, Chi W, Han WK, Zhang J, Pang H, Wang Z, Gu ZG. Cairo pentagon tessellated covalent organic frameworks with mcm topology for near-infrared phototherapy. Nat Commun 2024; 15:7150. [PMID: 39168967 PMCID: PMC11339432 DOI: 10.1038/s41467-024-50761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Despite the prevalent of hexagonal, tetragonal, and triangular pore structures in two-dimensional covalent organic frameworks (2D COFs), the pentagonal pores remain conspicuously absent. We herein present the Cairo pentagonal tessellated COFs, achieved through precisely chosen geometry and metrics of the linkers, resulting in unprecedented mcm topology. In each pentagonal structure, porphyrin units create four uniform sides around 15.5 Å with 90° angles, while tetrabiphenyl unit establish a bottom edge about 11.6 Å with 120° angles, aligning precisely with the criteria of Cairo Pentagon. According to the narrow bandgap and strong near-infrared (NIR) absorbance, as-synthesized COFs exhibit the efficient singlet oxygen (1O2) generation and photothermal conversion, resulting in NIR photothermal combined photodynamic therapy to guide cancer cell apoptosis. Mechanistic studies reveal that the good 1O2 production capability upregulates intracellular lipid peroxidation, leading to glutathione depletion, low expression of glutathione peroxidase 4, and induction of ferroptosis. The implementation of pentagonal Cairo tessellations in this work provides a promising strategy for diversifying COFs with new topologies, along with multimodal NIR phototherapy.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Liangchao Yuan
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/ Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Wenwen Chi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Jinfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Zhongchang Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/ Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
15
|
Zhao W, Luo L, Cong M, Liu X, Zhang Z, Bahri M, Li B, Yang J, Yu M, Liu L, Xia Y, Browning ND, Zhu WH, Zhang W, Cooper AI. Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production. Nat Commun 2024; 15:6482. [PMID: 39090140 PMCID: PMC11294449 DOI: 10.1038/s41467-024-50839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Nanosizing confers unique functions in materials such as graphene and quantum dots. Here, we present two nanoscale-covalent organic frameworks (nano-COFs) that exhibit exceptionally high activity for photocatalytic hydrogen production that results from their size and morphology. Compared to bulk analogues, the downsizing of COFs crystals using surfactants provides greatly improved water dispersibility and light-harvesting properties. One of these nano-COFs shows a hydrogen evolution rate of 392.0 mmol g-1 h-1 (33.3 μmol h-1), which is one of the highest mass-normalized rates reported for a COF or any other organic photocatalysts. A reverse concentration-dependent photocatalytic phenomenon is observed, whereby a higher photocatalytic activity is found at a lower catalyst concentration. These materials also show a molecule-like excitonic nature, as studied by photoluminescence and transient absorption spectroscopy, which is again a function of their nanoscale dimensions. This charts a new path to highly efficient organic photocatalysts for solar fuel production.
Collapse
Affiliation(s)
- Wei Zhao
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Liang Luo
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Muyu Cong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xueyan Liu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Mounib Bahri
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool, L69 3GL, UK
| | - Boyu Li
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Jing Yang
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Miaojie Yu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Lunjie Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yu Xia
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Nigel D Browning
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool, L69 3GL, UK
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Weiwei Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Andrew I Cooper
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK.
| |
Collapse
|
16
|
Pan H, Li J, Wang Y, Xia Q, Qiu L, Zhou B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402651. [PMID: 38816938 PMCID: PMC11304308 DOI: 10.1002/advs.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.
Collapse
Affiliation(s)
- Hu Pan
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yangang Wang
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Qineng Xia
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
17
|
Dong C, Chen Q, Deng X, Jiang L, Tan H, Zhou Y, Chen J, Wang R. Enhanced Photocatalytic Hydrogen Evolution of In 2S 3 by Decorating In 2O 3 with Rich Oxygen Vacancies. Inorg Chem 2024; 63:11125-11134. [PMID: 38833320 DOI: 10.1021/acs.inorgchem.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The hydrogen (H2) evolution rates of photocatalysts suffer from weak oxidation and reduction ability and low photogenerated charge carrier separation efficiency. Herein, by combining band-gap structure optimization and vacancy modulation through a one-step hydrothermal method, In2O3 containing oxygen vacancy (Ov/In2O3) is simply introduced into In2S3 to promote photocatalytic hydrogen evolution. Specifically, the change in the sulfur source ratio can induce the coexistence of Ov/In2O3 and In2S3 in a high-temperature hydrothermal process. Under light irradiation, In2S3@Ov/In2O3-0.1 nanosheets hold a remarkable average H2 evolution rate up to 4.04 mmol g-1 h-1, which is 32.14, 11.91, and 2.25-fold better than those of pristine In2S3, In2S3@Ov/In2O3-0.02, and In2S3@Ov/In2O3-0.25 nanosheets, respectively. The ultraviolet-visible (UV-vis) diffuse reflectance and photoluminescence (PL) spectra reveal that the formation of Ov/In2O3 in In2S3 optimizes the band-gap structure and accelerates the migration of the photogenerated charge carrier of In2S3@Ov/In2O3-x nanosheets, respectively. Both the enhancement of oxidation and reduction ability and photogenerated charge carrier separation ability are responsible for the remarkable improvement in photocatalytic H2 evolution performance. This work provides a new strategy to prepare a composite of metal sulfide and metal oxide through a one-step hydrothermal method.
Collapse
Affiliation(s)
- Changxue Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiuyan Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Deng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lan Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Han Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yufeng Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
He C, Tao S, Liu R, Zhi Y, Jiang D. Covalent Organic Frameworks: Linkage Chemistry and Its Critical Role in The Evolution of π Electronic Structures and Functions. Angew Chem Int Ed Engl 2024; 63:e202403472. [PMID: 38502777 DOI: 10.1002/anie.202403472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Covalent organic frameworks (COFs) provide a molecular platform for designing a novel class of functional materials with well-defined structures. A crucial structural parameter is the linkage, which dictates how knot and linker units are connected to form two-dimensional polymers and layer frameworks, shaping ordered π-array and porous architectures. However, the roles of linkage in the development of ordered π electronic structures and functions remain fundamental yet unresolved issues. Here we report the designed synthesis of COFs featuring four representative linkages: hydrazone, imine, azine, and C=C bonds, to elucidate their impacts on the evolution of π electronic structures and functions. Our observations revealed that the hydrazone linkage provides a non-conjugated connection, while imine and azine allow partial π conjugation, and the C=C bond permits full π-conjugation. Importantly, the linkage profoundly influences the control of π electronic structures and functions, unraveling its pivotal role in determining key electronic properties such as band gap, frontier energy levels, light absorption, luminescence, carrier density and mobility, and magnetic permeability. These findings highlight the significance of linkage chemistry in COFs and offer a general and transformative guidance for designing framework materials to achieve electronic functions.
Collapse
Affiliation(s)
- Chunyu He
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongfeng Zhi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
19
|
Zheng S, Bi S, Fu Y, Wu Y, Liu M, Xu Q, Zeng G. 3D Crown Ether Covalent Organic Framework as Interphase Layer toward High-Performance Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313076. [PMID: 38340141 DOI: 10.1002/adma.202313076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The practical application of lithium (Li) metal batteries is inhibited by accumulative Li dendrites and continuous active Li consumption during cycling, which results in a low Coulombic efficiency and short lifetime. Constructing artificial solid-electrolyte interphase (SEI) layer in Li anode, such as 2D covalent organic frameworks (COFs), is an effective strategy to restrain the formation of Li dendrites and improve cycling performance. However, the exploration of 3D COFs as protecting layers is rarely reported, because of the preconception that the interconnect pores in 3D COFs eventually cause Li dendrites in disordered direction. 3D crown ether-based COF with ffc topology as interphase layer, in which the crown ether units are arranged in parallel and vertical orientation along the electrode, is demonstrated. The strong coupling effect between the crown ether and Li+ accelerates Li+ diffusion kinetics and enables homogeneous Li+ flux, resulting in a high Li+ transference number of 0.85 and smooth Li deposition in 3D direction. Li/COF-Cu cells display a lower Li-nucleation overpotential (17.4 mV) and high average Coulombic efficiency of ≈98.6% during 340 cycles with COF incorporation. This work gives a new insight into designing COFs for energy storage systems.
Collapse
Affiliation(s)
- Shuang Zheng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuai Bi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Yang Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Minghao Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Wang M, Lv H, Dong B, He W, Yuan D, Wang X, Wang R. Photoelectron Migration Boosted by Hollow Double-Shell Dyads Based on Covalent Organic Frameworks for Highly Efficient Photocatalytic Hydrogen Generation. Angew Chem Int Ed Engl 2024; 63:e202401969. [PMID: 38372671 DOI: 10.1002/anie.202401969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Photocatalytic hydrogen production based on noble metal-free systems is a promising technology for the conversion of solar energy into green hydrogen, it is pivotal and challenging to tailor-make photocatalysts for achieving high photocatalytic efficiency. Herein, we reported a hollow double-shell dyad through uniformly coating covalent organic frameworks (COFs) on the surface of hollow Co9S8. The double shell architecture enhances the scattering and refraction efficiency of incident light, shortens the transmission distance of the photogenerated charge carriers, and exposes more active sites for photocatalytic conversion. The hydrogen evolution rate is as high as 23.15 mmol g-1 h-1, which is significantly enhanced when compared with that of their physical mixture (0.30 mmol g-1 h-1) and Pt-based counterpart (11.84 mmol g-1 h-1). This work provides a rational approach to the construction of noble-metal-free photocatalytic systems based on COFs to enhance hydrogen evolution performance.
Collapse
Affiliation(s)
- Meiying Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Haowei Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Beibei Dong
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Wenhao He
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Ruihu Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| |
Collapse
|
21
|
Gu CC, Ni CQ, Wu RJ, Deng L, Zou J, Li H, Tong CY, Xu FH, Weng BC, Zhu RL. Donor-acceptor moiety functionalized covalent organic frameworks for boosting charge separation and H 2 photogeneration. J Colloid Interface Sci 2024; 658:450-458. [PMID: 38118191 DOI: 10.1016/j.jcis.2023.12.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/22/2023]
Abstract
Covalent organic frameworks (COFs) have a broad prospect to be used as a photocatalytic platform to convert solar energy into valuable chemicals due to their tunable structures and rich active catalytic sites. However, constructing COFs with tuned sp2-carbon donor-acceptor moiety remains an enormous challenge. Herein, we synthesized two new fully π-conjugated cyano-ethylene-linked COFs containing benzotrithiophene as functional group by Knoevenagel polycondensation reaction. The accetpor 2,2'-bipyridine unit in BTT-BpyDAN-COF skeleton favored the formation of a intermolecular specific electron transport pathway with the donor benzotrithiophene, and thereby promoted charge separation and transfer efficiency. Specifically, a donor-acceptor (D-A) type BTT-BpyDAN-COF exhibited high hydrogen evolution rate of 10.1 mmol g-1h-1 and an excellent apparent quantum efficiency of 4.83 % under visible light irradiation.
Collapse
Affiliation(s)
- Chang-Cheng Gu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chen-Quan Ni
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Run-Juan Wu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lu Deng
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Zou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hao Li
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chun-Yi Tong
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Feng-Hua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Bai-Cheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Ri-Long Zhu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
22
|
Zhao H, Zhu H, Wang M, Liu H, Li X. Synergistic optimization of triple phase junctions and oxygen vacancies over Mn xCd 1-xS/Ov-WO 3 for boosting photocatalytic hydrogen evolution. Dalton Trans 2024; 53:2008-2017. [PMID: 38214916 DOI: 10.1039/d3dt04104b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Strengthening the separation of photogenerated charge carriers is crucial for improving the efficiency of photocatalytic hydrogen evolution. Herein, t-Mn0.5Cd0.5S/Ov-WO3 (t-MCSW) triple-phase junctions with rich oxygen vacancies were developed using the calcination-hydrothermal method. The corresponding morphology and structure of the samples were examined by XRD, TEM and XPS. The formation of the S-scheme heterostructure in t-MCSW has also been confirmed with in situ XPS, work function analysis and free radical capture tests. The experimental results demonstrate that t-MCSW-7 exhibited optimal activity (194.2 mmol g-1 h-1), which was about 4 times higher than that of the individual Mn0.5Cd0.5S (t-MCS, 48.8 mmol g-1 h-1). The apparent quantum yield of t-MCSW-7 is 29.14% at 420 nm, and the material exhibits excellent stability after seven cycles of photocatalytic reaction. The excellent photocatalytic activity of t-MCSW-7 is attributed to more efficient separation of charge carriers by triple-phase junctions connected by homojunctions and heterojunctions. Moreover, the existence of oxygen vacancies broadens absorption spectra and accelerates surface charge transfer. The synergistic effect of phase junctions and oxygen vacancies leads to an enhancement of hydrogen evolution activity. This work provides a new idea for preparing efficient photocatalysts.
Collapse
Affiliation(s)
- Haitao Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
| | - Min Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
| | - Heyuan Liu
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| |
Collapse
|
23
|
Zhao H, Zhao B, Liu H, Li X. Green synthesis of 3D core-shell SnS 2/SnS-Cd 0.5Zn 0.5S multi-heterojunction for efficient photocatalytic H 2 evolution. Dalton Trans 2024; 53:591-600. [PMID: 38063063 DOI: 10.1039/d3dt03533f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Low charge carrier separation efficiency is one of the key factors restricting photocatalytic hydrogen evolution performance. It is an effective strategy to build heterojunctions to steer charge migration. Herein, a series of x-SnS2/SnS-Cd0.5Zn0.5S (x-SS-CZS) nanosphere composites with varying mass ratios of SnS2/SnS (SS) were prepared through in situ hydrothermal synthesis. Moreover, XRD, TEM, and XPS were used to characterize the 3D core-shell SS-CZS multi-heterojunction composite. The 5-SS-CZS heterojunction composite with 5 wt% content of SS exhibits a remarkable hydrogen evolution rate of 168.85 mmol g-1 h-1, which is 5.4 times higher than that of pristine twin CZS (31.08 mmol g-1 h-1) and 1.9 times higher than that of 5-SnS2-CZS (88.21 mmol g-1 h-1). Furthermore, the composite catalyst showed excellent photostability after four cycles of reactions under visible light illumination. The apparent quantum yield at λ = 420 nm could reach up to 24.78%. The excellent hydrogen evolution performance of 5-SS-CZS nanospheres is ascribed to the following factors: (1) a core-shell catalyst with broad spectral absorption improves light utilization efficiency, (2) hybrid material with large surface area provides more active sites and shows the highest H2 activity, (3) a multi-heterojunction composite extends the lifetime of photoinduced carriers and accelerates charge separation and migration, and (4) SS as a hole trapping agent enhances the photocatalytic stability performance. This work proposes a possible photocatalytic mechanism, while also providing a novel approach for the synthesis of highly active and stable photocatalysts.
Collapse
Affiliation(s)
- Haitao Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, P.R.China.
| | - Baohua Zhao
- College of Science, China University of Petroleum (East China), Qingdao, P.R.China
| | - Heyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, P.R.China.
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, P.R.China.
| |
Collapse
|
24
|
Chen R, Meng L, Xu W, Li L. Cocatalysts-Photoanode Interface in Photoelectrochemical Water Splitting: Understanding and Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304807. [PMID: 37653598 DOI: 10.1002/smll.202304807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Sluggish oxygen evolution reactions on photoanode surfaces severely limit the application of photoelectrochemical (PEC) water splitting. The loading of cocatalysts on photoanodes has been recognized as the simplest and most efficient optimization scheme, which can reduce the surface barrier, provide more active sites, and accelerate the surface catalytic reaction kinetics. Nevertheless, the introduction of cocatalysts inevitably generates interfaces between photoanodes and oxygen evolution cocatalysts (Ph/OEC), which causes severe interfacial recombination and hinders the carrier transfer. Recently, many researchers have focused on cocatalyst engineering, while few have investigated the effect of the Ph/OEC interface. Hence, to maximize the advantages of cocatalysts, interfacial problems for designing efficient cocatalysts are systematically introduced. In this review, the interrelationship between the Ph/OEC and PEC performance is classified and some methods for characterizing Ph/OEC interfaces are investigated. Additionally, common interfacial optimization strategies are summarized. This review details cocatalyst-design-based interfacial problems, provides ideas for designing efficient cocatalysts, and offers references for solving interfacial problems.
Collapse
Affiliation(s)
- Runyu Chen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Linxing Meng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Weiwei Xu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
25
|
Wu Y, Qu Y, Su C, Yang X, Yang Y, Zhang Y, Huang W. Enhanced Photoinduced Carrier Separation in Fe-MOF-525/CdS for Photocatalytic Hydrogen Evolution: Improved Catalytic Dynamics with Specific Active Sites. Inorg Chem 2023; 62:21290-21298. [PMID: 38085535 DOI: 10.1021/acs.inorgchem.3c03378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Single-atom metal-anchored porphyrin-based metal-organic frameworks (MOFs) have shown excellent light absorption, catalytic sites, and high stability during photocatalytic reactions, while there are still challenges for facile assembly with quantum dots to enhance catalytic dynamics. Herein, a kind of Fe single atom-doped MOF material (Fe-MOF-525) was ball milled with CdS in a proper ratio through Fe-N4 and Fe-N-C bonding, which showed the enhanced photoinduced carrier separation ability. As a result, extended light absorption ranges of CdS/Fe-MOF-5252.3 induced the promotion of the photocatalytic hydrogen (H2) value (3638.6 μmol g-1 h-1), which was 7.2 and 2.3 times higher than those of Fe-MOF-525 and CdS. In this work, the facile synthetic technique, specific active sites, and enhanced catalytic dynamics in the composite highlight the future research on MOF-based heterojunctions and their potential photocatalysis applications..
Collapse
Affiliation(s)
- Yulu Wu
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanning Qu
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chenyang Su
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiufang Yang
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuhao Yang
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanan Zhang
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenhuan Huang
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
26
|
Wang S, Wu T, Wu S, Guo J, He T, Wu Y, Yuan W, Zhang Z, Hua Y, Zhao Y. Cobaloxime-Integrated Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution Coupled with Alcohol Oxidation. Angew Chem Int Ed Engl 2023; 62:e202311082. [PMID: 37698088 DOI: 10.1002/anie.202311082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
We report an azide-functionalized cobaloxime proton-reduction catalyst covalently tethered into the Wurster-type covalent organic frameworks (COFs). The cobaloxime-modified COF photocatalysts exhibit enhanced photocatalytic activity for hydrogen evolution reaction (HER) in alcohol-containing solution with no presence of a typical sacrificial agent. The best performing cobaloxime-modified COF hybrid catalyzes hydrogen production with an average HER rate up to 38 μmol h-1 in ethanol/phosphate buffer solution under 4 h illumination. Ultrafast transient optical spectroscopy characterizations and charge carrier analysis reveal that the alcohol contents functioning as hole scavengers could be oxidized by the photogenerated holes of COFs to form aldehydes and protons. The consumption of the photogenerated holes thus suppresses exciton recombination of COFs and improves the ratio of free electrons that were effectively utilized to drive catalytic reaction for HER. This work demonstrates a great potential of COF-catalyzed HER using alcohol solvents as hole scavengers and provides an example toward realizing the accessibility to the scope of reaction conditions and a greener route for energy conversion.
Collapse
Affiliation(s)
- Shihuai Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Tai Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shuyang Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhengyang Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yong Hua
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, Yunnan, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
27
|
Wan Y, Zhang J, Wang D, Sun P, Shi L, Li S, Zhang J, Yan X, Wu X. A Data-Driven Search of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Overall Water Splitting. J Phys Chem Lett 2023; 14:7421-7432. [PMID: 37578905 DOI: 10.1021/acs.jpclett.3c01956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Two-dimensional (2D) covalent organic frameworks (COFs) with versatile structural and optoelectronic properties that can be tuned with building blocks and topological structures have received widespread attention for photocatalytic water splitting in recent years. However, few of these have been reported for overall water splitting under visible light. Here, we present a data-driven search of 2D COFs capable of visible-light-driven overall water splitting by combining high-throughput first-principles computations and experimental validations. Seven 2D COFs were identified to be capable of overall water splitting from the CoRE COF database, and their photocatalytic activities were further verified and optimized by our preliminary experiments. The production rates of H2 and O2 reached 80 and 32 μmol g-1 h-1, respectively, without using sacrificial agents. This work represents an attempt to explore 2D COFs for visible-light-driven overall water splitting with a data-driven approach that could accelerate the discovery and design of COFs toward photocatalytic overall water splitting.
Collapse
Affiliation(s)
- Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiaojiao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dayong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information and Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengting Sun
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lebin Shi
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shun Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Yan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information and Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
28
|
He T, Zhao Y. Covalent Organic Frameworks for Energy Conversion in Photocatalysis. Angew Chem Int Ed Engl 2023; 62:e202303086. [PMID: 37093128 DOI: 10.1002/anie.202303086] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 04/25/2023]
Abstract
Intensifying energy crises and severe environmental issues have led to the discovery of renewable energy sources, sustainable energy conversion, and storage technologies. Photocatalysis is a green technology that converts eco-friendly solar energy into high-energy chemicals. Covalent organic frameworks (COFs) are porous materials constructed by covalent bonds that show promising potential for converting solar energy into chemicals owing to their pre-designable structures, high crystallinity, and porosity. Herein, we highlight recent progress in the synthesis of COF-based photocatalysts and their applications in water splitting, CO2 reduction, and H2 O2 production. The challenges and future opportunities for the rational design of COFs for advanced photocatalysts are discussed. This Review is expected to promote further development of COFs toward photocatalysis.
Collapse
Affiliation(s)
- Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
29
|
Dong P, Xu X, Luo R, Yuan S, Zhou J, Lei J. Postsynthetic Annulation of Three-Dimensional Covalent Organic Frameworks for Boosting CO 2 Photoreduction. J Am Chem Soc 2023. [PMID: 37421363 DOI: 10.1021/jacs.3c03897] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Three-dimensional covalent organic frameworks (3D COFs), with interconnected pores and exposed functional groups, provide new opportunities for the design of advanced functional materials through postsynthetic modification. Herein, we demonstrate the successful postsynthetic annulation of 3D COFs to construct efficient CO2 reduction photocatalysts. Two 3D COFs, NJU-318 and NJU-319Fe, were initially constructed by connecting hexaphenyl-triphenylene units with pyrene- or Fe-porphyrin-based linkers. Subsequently, the hexaphenyl-triphenylene moieties within the COFs were postsynthetically transformed into π-conjugated hexabenzo-trinaphthylene (pNJU-318 and pNJU-319Fe) to enhance visible light absorption and CO2 photoreduction activity. The optimized photocatalyst, pNJU-319Fe, shows a CO yield of 688 μmol g-1, representing a 2.5-fold increase compared to that of unmodified NJU-319Fe. Notably, the direct synthesis of hexabenzo-trinaphthylene-based COF catalysts was unsuccessful due to the low solubility of conjugated linkers. This study not only provides an effective method to construct photocatalysts but also highlights the unlimited tunability of 3D COFs through structural design and postsynthetic modification.
Collapse
Affiliation(s)
- Pengfei Dong
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinyu Xu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuai Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|