1
|
He TB, Bao Y, Liu HJ, Jiang JN, Jiang GD, Xu DH, Shen XJ, Yang QS, Hu JM. The general glycan profiling of Dendrobium officinale and their protective effects on MIN6 cells via ERK signaling pathway. Int J Biol Macromol 2024; 281:136413. [PMID: 39395523 DOI: 10.1016/j.ijbiomac.2024.136413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Based on structural elucidation of natural and hydrolyzed glycans, the general glycans profiling of D. officinale were unequivocally established for the first time as follows: The results indicated that the structure of D. officinale glycans with low degree of polymerization (DP ≤ 22) was linear α-D-1,4-glucan, whereas the structure of glycans with high degree of polymerization (DP > 24) was linear acetylated 1,4-glucomannan. The content of acetyl groups and mannose to glucose (M/G) ratio increased with the degree of polymerization of D. officinale glycans. In addition, this study showed that natural D. officinale glycans protected pancreatic β-cell damage induced by glucotoxicity through the extracellular signal-regulated kinase (ERK)1/2 pathway.
Collapse
Affiliation(s)
- Tao-Bin He
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Yu Bao
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; College of Ethnic Medicine, Yunnan Minzu University, Kunming 650000, Yunnan, People's Republic of China
| | - Hong-Jun Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; College of Ethnic Medicine, Yunnan Minzu University, Kunming 650000, Yunnan, People's Republic of China
| | - Jia-Nan Jiang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Guo Dong Jiang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - De Hong Xu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Xiao-Jiang Shen
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Qing-Song Yang
- College of Ethnic Medicine, Yunnan Minzu University, Kunming 650000, Yunnan, People's Republic of China
| | - Jiang-Miao Hu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China.
| |
Collapse
|
2
|
Xu Q, Zhao Z, Chen X, Fan W, Jiang Y. The Impact of Surface Modifier on Magnetic Nanoparticle Properties and Their Application in CD3+T Cell Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39024471 DOI: 10.1021/acs.langmuir.4c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Fe3O4 nanoparticles occupy a pivotal position in the realm of nanobiology due to their nontoxic, biocompatible, and superparamagnetic properties. This study examines the influence of surface modifiers on the properties of magnetic nanoparticles. Poly(methacrylic acid) (PMAA), poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSM), trisodium citrate (TSC), carboxymethylcellulose (CMC), and carboxymethylated-dextran 40 (CMD40) were introduced into a one-pot solvothermal method to synthesize magnetic nanoparticles. TEM, the 4-(bromomethyl)-6,7-dimethoxy coumarin (BMMC) absorption assay, and the Bradford method were employed to characterize the diameter, carboxyl content, and protein immobilization ability of the nanoparticles, respectively. The findings revealed that CMD40-modified magnetic nanoparticles (CMD40-MNPs) exhibited the highest carboxyl content and streptavidin (SA) immobilization content, reaching 6.5 × 10-7 mol/mg and 375 μg/mg, respectively. In contrast, CMC-modified magnetic nanoparticles displayed opposite trends. This is primarily attributed to dextran's unique molecular structure, which enhances its water solubility and biocompatibility, thereby facilitating contact with Fe3O4 nanoparticles in aqueous solutions. CMD40-MNPs possess a saturation magnetization value of 60.90 emu/g and can be collected within (60 ± 5) s using a standard magnetic separator. Cytotoxicity assays demonstrated that CMD40-MNPs are nontoxic to cells. A cell sorting strategy utilizing the binding of SA-CMD40-MNPs and biotin antihuman CD3 antibody-modified cell suspensions was employed to isolate CD3+T cells. The results indicate that the purity and efficiency of targeted CD3+T cells are 85.2% and 61.5%, respectively.
Collapse
Affiliation(s)
- Qianrui Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhimin Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinyu Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wenqian Fan
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yong Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Kang KM, Lee DB, Kim HY. Industrial Research and Development on the Production Process and Quality of Cultured Meat Hold Significant Value: A Review. Food Sci Anim Resour 2024; 44:499-514. [PMID: 38765282 PMCID: PMC11097020 DOI: 10.5851/kosfa.2024.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 05/21/2024] Open
Abstract
Cultured meat has been gaining popularity as a solution to the increasing problem of food insecurity. Although research on cultured meat started later compared to other alternative meats, the industry is growing rapidly every year, with developed products evaluated as being most similar to conventional meat. Studies on cultured meat production techniques, such as culturing new animal cells and developing medium sera and scaffolds, are being conducted intensively and diversely. However, active in-depth research on the quality characteristics of cultured meat, including studies on the sensory and storage properties that directly influence consumer preferences, is still lacking. Additionally, studies on the combination or ratio of fat cells to muscle cells and on the improvement of microbiota, protein degradation, and fatty acid degradation remain to be conducted. By actively investigating these research topics, we aim to verify the quality and safety of cultured meats, ultimately improving the consumer preference for cultured meat products.
Collapse
Affiliation(s)
- Kyu-Min Kang
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Dong Bae Lee
- School of Languages and Cultures, The University of Queensland, Brisbane 4072, Australia
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
4
|
Chen Y, Chen Z, Zhu Y, Wen Y, Zhao C, Mu W. Recent Progress in Human Milk Oligosaccharides and Its Antiviral Efficacy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7607-7617. [PMID: 38563422 DOI: 10.1021/acs.jafc.3c09460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gastrointestinal (GI)-associated viruses, including rotavirus (RV), norovirus (NV), and enterovirus, usually invade host cells, transmit, and mutate their genetic information, resulting in influenza-like symptoms, acute gastroenteritis, encephalitis, or even death. The unique structures of human milk oligosaccharides (HMOs) enable them to shape the gut microbial diversity and endogenous immune system of human infants. Growing evidence suggests that HMOs can enhance host resistance to GI-associated viruses but without a systematic summary to review the mechanism. The present review examines the lactose- and neutral-core HMOs and their antiviral effects in the host. The potential negative impacts of enterovirus 71 (EV-A71) and other GI viruses on children are extensive and include neurological sequelae, neurodevelopmental retardation, and cognitive decline. However, the differences in the binding affinity of HMOs for GI viruses are vast. Hence, elucidating the mechanisms and positive effects of HMOs against different viruses may facilitate the development of novel HMO derived oligosaccharides.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense Spain
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Lui O, Dridi L, Gonzalez E, Yasmine S, Kubinski R, Billings H, Bohlmann J, Withers SG, Maurice C, Castagner B. Characterizing the Effect of Amylase Inhibitors on Maltodextrin Metabolism by Gut Bacteria Using Fluorescent Glycan Labeling. ACS Chem Biol 2023; 18:356-366. [PMID: 36728836 PMCID: PMC9942685 DOI: 10.1021/acschembio.2c00791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/29/2022] [Indexed: 02/03/2023]
Abstract
Diet-derived polysaccharides are an important carbon source for gut bacteria and shape the human gut microbiome. Acarbose, a compound used clinically to treat type 2 diabetes, is known to inhibit the growth of some bacteria on starches based on its activity as an inhibitor of α-glucosidases and α-amylases. In contrast to acarbose, montbretin A, a new drug candidate for the treatment of type 2 diabetes, has been reported to be more specific for the inhibition of α-amylase, notably human pancreatic α-amylase. However, the effects of both molecules on glycan metabolism across a larger diversity of human gut bacteria remain to be characterized. Here, we used ex vivo metabolic labeling of a human microbiota sample with fluorescent maltodextrin to identify gut bacteria affected by amylase inhibitors. Metabolic labeling was performed in the presence and absence of amylase inhibitors, and the fluorescently labeled bacteria were identified by fluorescence-activated cell sorting coupled with 16S rDNA amplicon sequencing. We validated the labeling results in cultured isolates and identified four gut bacteria species whose metabolism of maltodextrin is inhibited by acarbose. In contrast, montbretin A slowed the growth of only one species, supporting the fact that it is more selective. Metabolic labeling is a valuable tool to characterize glycan metabolism in microbiota samples and could help understand the untargeted impact of drugs on the human gut microbiota.
Collapse
Affiliation(s)
- Olivia Lui
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| | - Lharbi Dridi
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| | - Emmanuel Gonzalez
- Canadian
Centre for Computational Genomics, McGill Genome Center, Montreal, Quebec H3A 0G1, Canada
- Department
of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
- Gerald
Bronfman Department of Oncology, McGill
University, Montreal, Quebec H4A 3T2, Canada
| | - Suraya Yasmine
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| | - Ryszard Kubinski
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| | - Hannah Billings
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| | - Joerg Bohlmann
- Michael
Smith Laboratories, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Forest and Conservation Sciences, University
of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stephen G Withers
- Michael
Smith Laboratories, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Chemistry, Faculty of Science, University
of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Corinne Maurice
- Department
of Microbiology & Immunology, McGill
University, Montreal, Quebec H3A 2B4, Canada
| | - Bastien Castagner
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|