1
|
Ptak C, Rehman S, Wozniak RW. Mechanisms of nuclear envelope expansion. Curr Opin Cell Biol 2024; 91:102425. [PMID: 39250858 DOI: 10.1016/j.ceb.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
In actively dividing eukaryotic cells, the nuclear envelope membrane (NEM) expands during the cell cycle to accommodate increases in nuclear volume and formation of two nuclei as a cell passes through mitosis to form daughter cells. NEM expansion is driven by glycerophospholipid (GPL) synthesis that is regulated by the lipin family of phosphatidic acid phosphatases (PAPs). How, and when during the cell cycle, PAPs regulate membrane expansion differs between organisms undergoing a closed or open mitosis. Here, we discuss recent studies that shed light on the mechanisms of NE expansion. Moreover, we examine evidence that NEM expansion not only employs GPLs synthesized in the ER but also lipids whose synthesis is regulated by events at the inner nuclear membrane.
Collapse
Affiliation(s)
- Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Saif Rehman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Jog R, Han GS, Carman GM. The CTR hydrophobic residues of Nem1 catalytic subunit are required to form a protein phosphatase complex with Spo7 to activate yeast Pah1 PA phosphatase. J Biol Chem 2024; 300:108003. [PMID: 39551141 DOI: 10.1016/j.jbc.2024.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024] Open
Abstract
The Nem1-Spo7 phosphatase complex plays a key role in lipid metabolism as an activator of Pah1 phosphatidate phosphatase, which produces diacylglycerol for the synthesis of triacylglycerol and membrane phospholipids. For dephosphorylation of Pah1, the Nem1 catalytic subunit requires Spo7 for the recruitment of the protein substrate and interacts with the regulatory subunit through its conserved region (residues 251-446). In this work, we found that the Nem1 C-terminal region (CTR) (residues 414-436), which flanks the haloacid dehalogenase-like catalytic domain (residues 251-413), contains the conserved hydrophobic residues (L414, L415, L417, L418, L421, V430, L434, and L436) that are necessary for the complex formation with Spo7. AlphaFold predicts that some CTR residues of Nem1 interact with Spo7 conserved regions, whereas some residues interact with the haloacid dehalogenase-like domain. By site-directed mutagenesis, Nem1 variants were constructed to lack (Δ(414-446)) or substitute alanines (8A) and arginines (8R) for the hydrophobic residues. When co-expressed with Spo7, the CTR variants of Nem1 did not form a complex with Spo7. In addition, the Nem1 variants were incapable of catalyzing the dephosphorylation of Pah1 in the presence of Spo7. Moreover, the Nem1 variants expressed in nem1Δ cells did not complement the phenotypes characteristic of a defect in the Nem1-Spo7/Pah1 phosphatase cascade function (e.g., lipid synthesis, lipid droplet formation, and phospholipid biosynthetic gene expression). These findings support that Nem1 interacts with Spo7 through its CTR hydrophobic residues to form a phosphatase complex for catalytic activity and physiological functions.
Collapse
Affiliation(s)
- Ruta Jog
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
3
|
Yang J, Peng Y, Ding Y, Liu Y, Wang Y, Liu Y, Liu C. The Clinicopathological and Molecular Characteristics of Endocervical Gastric-Type Adenocarcinoma and the Use of Claudin18.2 as a Potential Therapeutic Target. Mod Pathol 2024; 37:100569. [PMID: 39025403 DOI: 10.1016/j.modpat.2024.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Endocervical gastric-type adenocarcinoma (GAS) is an aggressive type of endocervical mucinous adenocarcinoma characterized as being unrelated to human papillomavirus (HPV) and resistant to chemo/radiotherapy. In this study, we investigated the histology, immunohistochemistry patterns, and molecular characteristics in a large cohort of GAS (n = 62). Histologically, the majority of GAS cases exhibited a distinct morphology resembling gastric glands, although 2 exceptional cases exhibited HPV-associated adenocarcinoma morphology while retaining the characteristic histology of GAS at the invasive front. By immunohistochemistry, Claudin18.2 emerged as a highly sensitive and specific marker for GAS. Additionally, the strong expression of Claudin18.2 in patients with GAS indicated the potential of anti-Claudin18.2 therapy in the treatment of GAS. Other immunohistochemistry markers, including Muc6, p16, p53, Pax8, ER, and PR, may provide additional diagnostic clues for GAS. Quantitative methylation analysis revealed that the overexpression of Claudin18.2 in GAS was governed by the hypomethylation of the CLDN18.2 promoter CpG islands. To further elucidate the pathogenic mechanisms of GAS and its relationship with gastric adenocarcinoma, we performed whole exome sequencing on 11 GAS and 9 gastric adenocarcinomas. TP53, CDKN2A, STK11, and TTN emerged as the most frequently mutated genes in GAS. Mutations in these genes primarily affected cell growth, cell cycle regulation, senescence, and apoptosis. Intriguingly, these top mutated genes in GAS were also commonly mutated in gastric and pancreaticobiliary adenocarcinomas. Regarding germline variants, we identified a probably pathogenic variant in SPINK1, a gene linked to hereditary pancreatic cancer syndrome, in one GAS sample. This finding suggests a potential pathogenic link between pancreatic cancers and GAS. Overall, GAS exhibits molecular characteristics that resemble those observed in gastric and pancreaticobiliary adenocarcinomas, thereby lending support to the aggressive nature of GAS compared with HPV-associated adenocarcinoma.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yang Peng
- Fourth Department of Gynecologic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Ding
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuxiang Wang
- Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Liu
- Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Congrong Liu
- Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
4
|
Konno T, Murachi H, Otsuka K, Kimura Y, Sampei C, Arasaki Y, Kohara Y, Hayata T. Ctdnep1 phosphatase is required for negative regulation of RANKL-induced osteoclast differentiation in RAW264.7 cells. Biochem Biophys Res Commun 2024; 719:150063. [PMID: 38749090 DOI: 10.1016/j.bbrc.2024.150063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Osteoclasts are multinucleated cells with bone resorption activity. Excessive osteoclast activity has been implicated in osteoporosis, rheumatoid arthritis, and bone destruction due to bone metastases from cancer, making osteoclasts essential target cells in bone and joint diseases. C-terminal domain nuclear envelope phosphatase 1 (Ctdnep1, formerly Dullard) is a negative regulator of transforming growth factor (TGF)-β superfamily signaling and regulates endochondral ossification in mesenchymal cells during skeletal development. In this study, we investigated the role of Ctdnep1 in the Receptor activator of nuclear factor-kappa B ligand (RANKL)-induced RAW264.7 osteoclast differentiation. Expression of Ctdnep1 did not change during osteoclast differentiation; Ctdnep1 protein localized to the cytoplasm before and after osteoclast differentiation. Small interfering RNA-mediated knockdown of Ctdnep1 increased tartrate-resistant acid phosphatase-positive multinucleated osteoclasts and the expression of osteoclast marker genes, including Acp5, Ctsk, and Nfatc1. Interestingly, the knockdown of Ctdnep1 increased the protein level of Nfatc1 in cells unstimulated with RANKL. Knockdown of Ctdnep1 also enhanced calcium-resorbing activity. Mechanistically, the knockdown of Ctdnep1 increased the phosphorylation of RANKL signaling components. These results suggest that Ctdnep1 negatively regulates osteoclast differentiation by suppressing the RANKL signaling pathway.
Collapse
Affiliation(s)
- Takuto Konno
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Hitomi Murachi
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Kanon Otsuka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yuta Kimura
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Chisato Sampei
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yasuhiro Arasaki
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yukihiro Kohara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan.
| |
Collapse
|
5
|
Vriend J, Liu XQ. Survival-Related Genes on Chromosomes 6 and 17 in Medulloblastoma. Int J Mol Sci 2024; 25:7506. [PMID: 39062749 PMCID: PMC11277021 DOI: 10.3390/ijms25147506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Survival of Medulloblastoma (MB) depends on various factors, including the gene expression profiles of MB tumor tissues. In this study, we identified 967 MB survival-related genes (SRGs) using a gene expression dataset and the Cox proportional hazards regression model. Notably, the SRGs were over-represented on chromosomes 6 and 17, known for the abnormalities monosomy 6 and isochromosome 17 in MB. The most significant SRG was HMGA1 (high mobility group AT-hook 1) on chromosome 6, which is a known oncogene and a histone H1 competitor. High expression of HMGA1 was associated with worse survival, primarily in the Group 3γ subtype. The high expression of HMGA1 was unrelated to any known somatic copy number alteration. Most SRGs on chromosome 17p were associated with low expression in Group 4β, the MB subtype, with 93% deletion of 17p and 98% copy gain of 17q. GO enrichment analysis showed that both chromosomes 6 and 17 included SRGs related to telomere maintenance and provided a rationale for testing telomerase inhibitors in Group 3 MBs. We conclude that HMGA1, along with other SRGs on chromosomes 6 and 17, warrant further investigation as potential therapeutic targets in selected subgroups or subtypes of MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiao-Qing Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
6
|
Carrasquillo Rodríguez JW, Uche O, Gao S, Lee S, Airola MV, Bahmanyar S. Differential reliance of CTD-nuclear envelope phosphatase 1 on its regulatory subunit in ER lipid synthesis and storage. Mol Biol Cell 2024; 35:ar101. [PMID: 38776127 PMCID: PMC11244170 DOI: 10.1091/mbc.e23-09-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Lipin 1 is an ER enzyme that produces diacylglycerol, the lipid intermediate that feeds into the synthesis of glycerophospholipids for membrane expansion or triacylglycerol for storage into lipid droplets. CTD-Nuclear Envelope Phosphatase 1 (CTDNEP1) regulates lipin 1 to restrict ER membrane synthesis, but a role for CTDNEP1 in lipid storage in mammalian cells is not known. Furthermore, how NEP1R1, the regulatory subunit of CTDNEP1, contributes to these functions in mammalian cells is not fully understood. Here, we show that CTDNEP1 is reliant on NEP1R1 for its stability and function in limiting ER expansion. CTDNEP1 contains an amphipathic helix at its N-terminus that targets to the ER, nuclear envelope and lipid droplets. We identify key residues at the binding interface of CTDNEP1 and NEP1R1 and show that they facilitate complex formation in vivo and in vitro. We demonstrate that NEP1R1 binding to CTDNEP1 shields CTDNEP1 from proteasomal degradation to regulate lipin 1 and restrict ER size. Unexpectedly, NEP1R1 was not required for CTDNEP1's role in restricting lipid droplet biogenesis. Thus, the reliance of CTDNEP1 function on NEP1R1 depends on cellular demands for membrane production versus lipid storage. Together, our work provides a framework into understanding how the ER regulates lipid synthesis under different metabolic conditions.
Collapse
Affiliation(s)
| | - Onyedikachi Uche
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Shujuan Gao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794
| | - Shoken Lee
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Michael V. Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794
| | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| |
Collapse
|
7
|
Gao S, Carrasquillo Rodríguez JW, Bahmanyar S, Airola MV. Structure and mechanism of the human CTDNEP1-NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology. Proc Natl Acad Sci U S A 2024; 121:e2321167121. [PMID: 38776370 PMCID: PMC11145253 DOI: 10.1073/pnas.2321167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
C-terminal Domain Nuclear Envelope Phosphatase 1 (CTDNEP1) is a noncanonical protein serine/threonine phosphatase that has a conserved role in regulating ER membrane biogenesis. Inactivating mutations in CTDNEP1 correlate with the development of medulloblastoma, an aggressive childhood cancer. The transmembrane protein Nuclear Envelope Phosphatase 1 Regulatory Subunit 1 (NEP1R1) binds CTDNEP1, but the molecular details by which NEP1R1 regulates CTDNEP1 function are unclear. Here, we find that knockdown of NEP1R1 generates identical phenotypes to reported loss of CTDNEP1 in mammalian cells, establishing CTDNEP1-NEP1R1 as an evolutionarily conserved membrane protein phosphatase complex that restricts ER expansion. Mechanistically, NEP1R1 acts as an activating regulatory subunit that directly binds and increases the phosphatase activity of CTDNEP1. By defining a minimal NEP1R1 domain sufficient to activate CTDNEP1, we determine high-resolution crystal structures of the CTDNEP1-NEP1R1 complex bound to a peptide sequence acting as a pseudosubstrate. Structurally, NEP1R1 engages CTDNEP1 at a site distant from the active site to stabilize and allosterically activate CTDNEP1. Substrate recognition is facilitated by a conserved Arg residue in CTDNEP1 that binds and orients the substrate peptide in the active site. Together, this reveals mechanisms for how NEP1R1 regulates CTDNEP1 and explains how cancer-associated mutations inactivate CTDNEP1.
Collapse
Affiliation(s)
- Shujuan Gao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY11794
| | | | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511
| | - Michael V. Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY11794
| |
Collapse
|
8
|
Collins RRJ, Gee RRF, Sanchez MCH, Tozandehjani S, Bayat T, Breznik B, Lee AK, Peters ST, Connelly JP, Pruett-Miller SM, Roussel MF, Rakheja D, Tillman HS, Potts PR, Fon Tacer K. Melanoma antigens in pediatric medulloblastoma contribute to tumor heterogeneity and species-specificity of group 3 tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594201. [PMID: 38798351 PMCID: PMC11118370 DOI: 10.1101/2024.05.14.594201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Medulloblastoma (MB) is the most malignant childhood brain cancer. Group 3 MB subtype accounts for about 25% of MB diagnoses and is associated with the most unfavorable outcomes. Herein, we report that more than half of group 3 MB tumors express melanoma antigens (MAGEs), which are potential prognostic and therapeutic markers. MAGEs are tumor antigens, expressed in several types of adult cancers and associated with poorer prognosis and therapy resistance; however, their expression in pediatric cancers is mostly unknown. The aim of this study was to determine whether MAGEs are activated in pediatric MB. Methods To determine MAGE frequency in pediatric MB, we obtained formalin-fixed paraffin-embedded tissue (FFPE) samples of 34 patients, collected between 2008 - 2015, from the Children's Medical Center Dallas pathology archives and applied our validated reverse transcription quantitative PCR (RT-qPCR) assay to measure the relative expression of 23 MAGE cancer-testis antigen genes. To validate our data, we analyzed several published datasets from pediatric MB patients and patient-derived orthotopic xenografts, totaling 860 patients. We then examined how MAGE expression affects the growth and oncogenic potential of medulloblastoma cells by CRISPR-Cas9- and siRNA-mediated gene depletion. Results Our RT-qPCR analysis suggested that MAGEs were expressed in group 3/4 medulloblastoma. Further mining of bulk and single-cell RNA-sequencing datasets confirmed that 50-75% of group 3 tumors activate a subset of MAGE genes. Depletion of MAGEAs, B2, and Cs alter MB cell survival, viability, and clonogenic growth due to decreased proliferation and increased apoptosis. Conclusions These results indicate that targeting MAGEs in medulloblastoma may be a potential therapeutic option for group 3 medulloblastomas. Key Points Several Type I MAGE CTAs are expressed in >60% of group 3 MBs. Type I MAGEs affect MB cell proliferation and apoptosis. MAGEs are potential biomarkers and therapeutic targets for group 3 MBs. Importance of the Study This study is the first comprehensive analysis of all Type I MAGE CTAs ( MAGEA , -B , and -C subfamily members) in pediatric MBs. Our results show that more than 60% of group 3 MBs express MAGE genes, which are required for the viability and growth of cells in which they are expressed. Collectively, these data provide novel insights into the antigen landscape of pediatric MBs. The activation of MAGE genes in group 3 MBs presents potential stratifying and therapeutic options. Abstract Figure
Collapse
|
9
|
Gunn AL, Yashchenko AI, Dubrulle J, Johnson J, Hatch EM. A high-content screen reveals new regulators of nuclear membrane stability. Sci Rep 2024; 14:6013. [PMID: 38472343 PMCID: PMC10933478 DOI: 10.1038/s41598-024-56613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Analysis of known rupture determinants, including an automated quantitative analysis of nuclear lamina gaps, are consistent with CTDNEP1 acting independently of actin and nuclear lamina organization. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.
Collapse
Affiliation(s)
- Amanda L Gunn
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Artem I Yashchenko
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julien Dubrulle
- Cellular Imaging Shared Resource, The Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jodiene Johnson
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Emily M Hatch
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
10
|
Gao S, Carrasquillo Rodríguez JW, Bahmanyar S, Airola MV. Structure and mechanism of the human CTDNEP1-NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567952. [PMID: 38045299 PMCID: PMC10690229 DOI: 10.1101/2023.11.20.567952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
C-terminal Domain Nuclear Envelope Phosphatase 1 (CTDNEP1) is a non-canonical protein serine/threonine phosphatase that regulates ER membrane biogenesis. Inactivating mutations in CTDNEP1 correlate with development of medulloblastoma, an aggressive childhood cancer. The transmembrane protein Nuclear Envelope Phosphatase 1 Regulatory Subunit 1 (NEP1R1) binds CTDNEP1, but the molecular details by which NEP1R1 regulates CTDNEP1 function are unclear. Here, we find that knockdown of CTDNEP1 or NEP1R1 in human cells generate identical phenotypes, establishing CTDNEP1-NEP1R1 as an evolutionarily conserved membrane protein phosphatase complex that restricts ER expansion. Mechanistically, NEP1R1 acts as an activating regulatory subunit that directly binds and increases the phosphatase activity of CTDNEP1. By defining a minimal NEP1R1 domain sufficient to activate CTDNEP1, we determine high resolution crystal structures of the CTDNEP1-NEP1R1 complex bound to a pseudo-substrate. Structurally, NEP1R1 engages CTDNEP1 at a site distant from the active site to stabilize and allosterically activate CTDNEP1. Substrate recognition is facilitated by a conserved Arg residue that binds and orients the substrate peptide in the active site. Together, this reveals mechanisms for how NEP1R1 regulates CTDNEP1 and explains how cancer-associated mutations inactivate CTDNEP1.
Collapse
Affiliation(s)
- Shujuan Gao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794, USA
| | | | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Michael V. Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794, USA
| |
Collapse
|
11
|
Carrasquillo Rodríguez JW, Uche O, Gao S, Lee S, Airola MV, Bahmanyar S. Differential reliance of CTD-nuclear envelope phosphatase 1 on its regulatory subunit in ER lipid synthesis and storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562096. [PMID: 37873275 PMCID: PMC10592836 DOI: 10.1101/2023.10.12.562096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The endoplasmic reticulum (ER) is the site for the synthesis of the major membrane and storage lipids. Lipin 1 produces diacylglycerol, the lipid intermediate critical for the synthesis of both membrane and storage lipids in the ER. CTD-Nuclear Envelope Phosphatase 1 (CTDNEP1) regulates lipin 1 to restrict ER membrane synthesis, but its role in lipid storage in mammalian cells is unknown. Here, we show that the ubiquitin-proteasome degradation pathway controls the levels of ER/nuclear envelope-associated CTDNEP1 to regulate ER membrane synthesis through lipin 1. The N-terminus of CTDNEP1 is an amphipathic helix that targets to the ER, nuclear envelope and lipid droplets. We identify key residues at the binding interface of CTDNEP1 with its regulatory subunit NEP1R1 and show that they facilitate complex formation in vivo and in vitro . We demonstrate a role for NEP1R1 in temporarily shielding CTDNEP1 from proteasomal degradation to regulate lipin 1 and restrict ER size. Unexpectedly, we found that NEP1R1 is not required for CTDNEP1's role in restricting lipid droplet biogenesis. Thus, the reliance of CTDNEP1 function on its regulatory subunit differs during ER membrane synthesis and lipid storage. Together, our work provides a framework into understanding how the ER regulates lipid synthesis and storage under fluctuating conditions.
Collapse
|
12
|
Yang W, Ma W, Huang J, Cai Y, Peng X, Zhao F, Zhang D, Zou Z, Sun H, Qi X, Ge M. Beijing Children's Hospital guidelines on the design and conduction of the first standardized database for medulloblastoma. Metab Brain Dis 2023; 38:2393-2400. [PMID: 37261631 DOI: 10.1007/s11011-023-01233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Medulloblastoma (MB) is one of the most common malignant childhood brain tumors (WHO grade IV). Its high degree of malignancy leads to an unsatisfactory prognosis, requiring more precise and personalized treatment in the near future. Multi-omics and artificial intelligence have been playing a significant role in precise medical research, but their implementation needs a large amount of clinical information and biomaterials. For these reasons, it is urgent for current MB researchers to establish a large sample-size database of MB that contains complete clinical data and sufficient biomaterials such as blood, cerebrospinal fluid (CSF), cancer tissue, and urine. Unfortunately, there are few biobanks of pediatric central nervous system (CNS) tumors throughout the world for limited specimens, scarce funds, different standards collecting methods and et cl. Even though, China falls behind western countries in this area. The present research set up a standard workflow to construct the Beijing Children's Hospital Medulloblastoma (BCH-MB) biobank. Clinical data from children with MB and for collecting and storing biomaterials, along with regular follow-up has been collected and recorded in this database. In the future, the BCH-MB biobank could make it possible to validate the promising biomarkers already identified, discover unrevealed MB biomarkers, develop novel therapies, and establish personalized prognostic models for children with MB upon the support of its sufficient data and biomaterials, laying the foundation for individualized therapies of children with MB.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenping Ma
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jiansong Huang
- Department of Neurosurgery, Peking University International Hospital, Peking University Health Science Center, Peking University, Beijing, 102200, China
| | - Yingjie Cai
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaojiao Peng
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Fengmao Zhao
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Di Zhang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhewei Zou
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hailang Sun
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Xiang Qi
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
13
|
Gunn AL, Yashchenko AI, Dubrulle J, Johnson J, Hatch EM. A high-content screen reveals new regulators of nuclear membrane stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542944. [PMID: 37398267 PMCID: PMC10312541 DOI: 10.1101/2023.05.30.542944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Further analysis of known rupture contributors, including a newly developed automated quantitative analysis of nuclear lamina gaps, strongly suggests that CTDNEP1 acts in a new pathway. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.
Collapse
Affiliation(s)
- Amanda L. Gunn
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Artem I. Yashchenko
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Julien Dubrulle
- Cellular Imaging Shared Resource, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Jodiene Johnson
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Emily M. Hatch
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| |
Collapse
|
14
|
Rallabandi HR, Choi H, Cha H, Kim YJ. Research Trends in C-Terminal Domain Nuclear Envelope Phosphatase 1. Life (Basel) 2023; 13:1338. [PMID: 37374122 DOI: 10.3390/life13061338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
C-terminal domain nuclear envelope phosphatase 1 (CTDNEP1, formerly Dullard) is a member of the newly emerging protein phosphatases and has been recognized in neuronal cell tissues in amphibians. It contains the phosphatase domain in the C-terminal, and the sequences are conserved in various taxa of organisms. CTDNEP1 has several roles in novel biological activities such as neural tube development in embryos, nuclear membrane biogenesis, regulation of bone morphogenetic protein signaling, and suppression of aggressive medulloblastoma. The three-dimensional structure of CTDNEP1 and the detailed action mechanisms of CTDNEP1's functions have yet to be determined for several reasons. Therefore, CTDNEP1 is a protein phosphatase of interest due to recent exciting and essential works. In this short review, we summarize the presented biological roles, possible substrates, interacting proteins, and research prospects of CTDNEP1.
Collapse
Affiliation(s)
- Harikrishna Reddy Rallabandi
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| | - Haewon Choi
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyunseung Cha
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Jun Kim
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|