1
|
Liang K, Li N, Liu M, Song J, Guo C. Enantioselective Electrocatalysis for Cross-Dehydrogenative Heteroarylation with Indoles, Pyrroles, and Furans. Angew Chem Int Ed Engl 2025; 64:e202415723. [PMID: 39428829 DOI: 10.1002/anie.202415723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
Oxidative cross-dehydrogenative C-H/C-H functionalizations represent an exemplary approach for synthesizing carbonyl compounds via α-heteroarylation. Here we present the development of a direct anodic oxidative coupling process between 2-acylimidazoles and divergent heterocyclic systems including indole, pyrrole, and furan, facilitated by ferrocene-assisted asymmetric nickel electrocatalysis with high levels of enantioselectivity. Mechanistic investigations indicate that the reaction initially involves the formation of a chiral Ni-bound α-carbonyl radical, which is then captured by the heteroarene radical cation via intermolecular stereoselective radical/radical cation coupling. The mild, scalable, and robust reaction conditions allow for a broad substrate scope and excellent functional group tolerance, enabling access to a wide range of chiral hetero-compounds. The consequential α-heteroaromatic carbonyl products can potentially be transformed into a plethora of synthetically valuable frameworks, as exemplified by their application in the asymmetric total synthesis of (-)-COX-2 inhibitor, (+)-acremoauxin A, and (+)-pemedolac.
Collapse
Affiliation(s)
- Kang Liang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ning Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Minghao Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Li J, Liu M, Wei B, Peng L, Song J, Guo C. Enantioselective Nickel-Electrocatalyzed Cross-Dehydrogenative α- and γ-Nitroalkylation. J Am Chem Soc 2024; 146:34043-34052. [PMID: 39578233 DOI: 10.1021/jacs.4c13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Asymmetric catalytic versions of electricity-driven processes hold immense potential for the sustainable preparation of chiral compounds. However, the involvement of anodic oxidative cross-dehydrogenative coupling events between two distinct nucleophiles makes it challenging for a chiral catalyst to regulate the stereochemistry of the products. Our current electrocatalytic strategy for enantioconvergent cross-dehydrogenative α- and γ-nitroalkylation via radical-based pathways produces an array of enantioenriched nitroesters without supplementary stoichiometric oxidants. Mechanistic investigations reveal that the nickel catalyst plays a key role in both the electrochemical activation of the substrates and the stereoselectivity-defining events, affording the electrochemically generated Lewis acid-bound α-carbonyl radicals to interact with in situ-generated nitronate anions in a stereoselective manner. This electrocatalytic approach enables transformations that are highly challenging under thermal conditions, such as umpolung reactivity with readily available substrates, all-carbon quaternary stereocenter creation, and the control of remote stereochemistry.
Collapse
Affiliation(s)
- Juan Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Minghao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Boyuan Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Lingzi Peng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Tan CY, Hong S. Harnessing the potential of acyl triazoles in bifunctional cobalt-catalyzed radical cross-coupling reactions. Nat Commun 2024; 15:6965. [PMID: 39138198 PMCID: PMC11322283 DOI: 10.1038/s41467-024-51376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Persistent radicals facilitate numerous selective radical coupling reactions. Here, we have identified acyl triazole as a new and versatile moiety for generating persistent radical intermediates through single-electron transfer processes. The efficient generation of these persistent radicals is facilitated by the formation of substrate-coordinated cobalt complexes, which subsequently engage in radical cross-coupling reactions. Remarkably, triazole-coordinated cobalt complexes exhibit metal-hydride hydrogen atom transfer (MHAT) capabilities with alkenes, enabling the efficient synthesis of diverse ketone products without the need for external ligands. By leveraging the persistent radical effect, this catalytic approach also allows for the development of other radical cross-coupling reactions with two representative radical precursors. The discovery of acyl triazoles as effective substrates for generating persistent radicals and as ligands for cobalt catalysis, combined with the bifunctional nature of the cobalt catalytic system, opens up new avenues for the design and development of efficient and sustainable organic transformations.
Collapse
Affiliation(s)
- Chang-Yin Tan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
4
|
Wang YF, Wang F, Yang DD, Kittakoop P, Tan YX, Tian P. Enantioselective Reductive Cyclization of Alkynyl-Tethered Cyclohexadienones Catalyzed by Rhodium Complexes. Org Lett 2024; 26:5614-5619. [PMID: 38953701 DOI: 10.1021/acs.orglett.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Although various types of asymmetric cyclization reactions of 1,6-enynes have been established, simple asymmetric reductive cyclization remains underdeveloped. In this study, the enantioselective reductive cyclization of alkynyl-tethered cyclohexadienones (1,6-enynes) has been developed via a chiral pincer rhodium catalyst, affording cis-hydrobenzofurans and cis-hydroindoles with high enantioselectivities (90-99% ee). Furthermore, several synthetic applications and preliminary inhibitory activity studies against SARS-CoV-2 3CLpro are presented.
Collapse
Affiliation(s)
- Yi-Fan Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Feng Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Dan-Dan Yang
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Laksi, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Laksi, Bangkok 10210, Thailand
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Yun-Xuan Tan
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
5
|
Hu Q, Wei B, Wang M, Liu M, Chen XW, Ran CK, Wang G, Chen Z, Li H, Song J, Yu DG, Guo C. Enantioselective Nickel-Electrocatalyzed Reductive Propargylic Carboxylation with CO 2. J Am Chem Soc 2024; 146:14864-14874. [PMID: 38754389 DOI: 10.1021/jacs.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The exploitation of carbon dioxide (CO2) as a sustainable, plentiful, and harmless C1 source for the catalytic synthesis of enantioenriched carboxylic acids has long been acknowledged as a pivotal task in synthetic chemistry. Herein, we present a current-driven nickel-catalyzed reductive carboxylation reaction with CO2 fixation, facilitating the formation of C(sp3)-C(sp2) bonds by circumventing the handling of moisture-sensitive organometallic reagents. This electroreductive protocol serves as a practical platform, paving the way for the synthesis of enantioenriched propargylic carboxylic acids (up to 98% enantiomeric excess) from racemic propargylic carbonates and CO2. The efficacy of this transformation is exemplified by its successful utilization in the asymmetric total synthesis of (S)-arundic acid, (R)-PIA, (S)-chizhine D, (S)-cochlearin G, and (S,S)-alexidine, thereby underscoring the potential of asymmetric electrosynthesis to achieve complex molecular architectures sustainably.
Collapse
Affiliation(s)
- Qingdong Hu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Boyuan Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Mingxu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Minghao Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gefei Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Haoze Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Huang C, Tao Y, Cao X, Zhou C, Lu Q. Asymmetric Paired Electrocatalysis: Enantioselective Olefin-Sulfonylimine Coupling. J Am Chem Soc 2024; 146:1984-1991. [PMID: 38113828 DOI: 10.1021/jacs.3c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Asymmetric electrocatalysis offers exciting new strategies for the synthesis of chiral molecules through novel reaction pathways. However, simultaneous activation of reactants on both electrodes via asymmetric paired electrolysis, which is more energy efficient and economic than single half-electrode synthesis, remains a formidable challenge. Herein, an asymmetric olefin-sulfonylimine coupling via paired electrocatalysis is presented for the first time. In this protocol, Co-catalyzed hydrogen atom transfer on the anode and Ni-catalyzed sulfonylimine reduction on the cathode were seamlessly cross-coupled. The new catalytic system enables the formation of chiral amine products bearing a tetrasubstituted carbon stereocenter with a high enantioselectivity (up to 96% ee).
Collapse
Affiliation(s)
- Cheng Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Xiyang Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Cong Zhou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
7
|
Zhang J, Zhu W, Chen Z, Zhang Q, Guo C. Dual-Catalyzed Stereodivergent Electrooxidative Homocoupling of Benzoxazolyl Acetate. J Am Chem Soc 2024; 146:1522-1531. [PMID: 38166394 DOI: 10.1021/jacs.3c11429] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The development of a reliable strategy for stereodivergent radical reactions that allows convenient access to all stereoisomers of homocoupling adducts with multiple stereogenic centers remains an unmet goal in organic synthesis. Herein, we describe a dual-catalyzed electrooxidative C(sp3)-H/C(sp3)-H homocoupling with complete absolute and relative stereocontrol for the synthesis of molecules with contiguous quaternary stereocenters in a general and predictable manner. The stereodivergent electrooxidative homocoupling reaction is achieved by synergistically utilizing two distinct chiral catalysts that convert identical racemic substrates into inherently distinctive reactive chiral intermediates, dictate enantioselective radical addition, and allow access to the full complement of stereoisomeric products via simple catalyst permutation. The successful execution of the dual-electrocatalytic strategy programmed via electrooxidative activation provides a significant conceptual advantage and will serve as a useful foundation for further research into cooperative stereocontrolled radical transformations and diversity-oriented synthesis.
Collapse
Affiliation(s)
- Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wangjie Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Chen MY, Charvet S, Payard PA, Perrin MEL, Vantourout JC. Electrochemically Driven Nickel-Catalyzed Halogenation of Unsaturated Halide and Triflate Derivatives. Angew Chem Int Ed Engl 2024; 63:e202311165. [PMID: 37930784 DOI: 10.1002/anie.202311165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
A robust electrochemically driven nickel-catalyzed halogen exchange of unsaturated halides and triflates (Br to Cl, I to Cl, I to Br, and OTf to Cl) is reported. A combination of NiCl2 ⋅ glyme as the precatalyst, 2,2'-bipyridine as a ligand, NMP as the solvent, and electrochemistry allowed the generation of a nickel species that promotes reductive elimination of the desired product. This paired electrochemical halogenation is compatible with a range of unsaturated halides and triflates, including heterocycles, dihaloarenes, and alkenes with good functional-group tolerance. Joint experimental and theoretical mechanistic investigations highlighted three catalytic events: i) oxidative addition of the aryl halide to a Ni(0) species to deliver a Ni(II) intermediate; ii) halide metathesis at Ni(II); iii) electrochemical oxidation of Ni(II) to Ni(III) to enable the formation of the desired aryl halide upon reductive elimination. This methodology allows the replacement of heavy halogens (I or Br) or polar atoms (O) with the corresponding lighter and more lipophilic Cl group to block undesired reactivity or modify the properties of drug and agrochemical candidates.
Collapse
Affiliation(s)
- Ming-Yu Chen
- UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622, Villeurbanne cedex, France
| | - Sylvain Charvet
- UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622, Villeurbanne cedex, France
| | - Pierre-Adrien Payard
- UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622, Villeurbanne cedex, France
| | - Marie-Eve L Perrin
- UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622, Villeurbanne cedex, France
| | - Julien C Vantourout
- UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622, Villeurbanne cedex, France
| |
Collapse
|
9
|
Li Q, Li J, Zhang J, Wu S, Zhang Y, Lin A, Yao H. Enantioselective Synthesis of Bicyclo[3.2.1]octadienes via Palladium-Catalyzed Intramolecular Alkene-Alkyne Coupling Reaction. Angew Chem Int Ed Engl 2023:e202313404. [PMID: 37921257 DOI: 10.1002/anie.202313404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Bicyclo[3.2.1]octadiene compounds and derivatives exist in a number of natural products and bioactive compounds. Nevertheless, catalytic enantioselective protocols for the synthesis of these skeletons have not been disclosed. Herein we reported a palladium-catalyzed asymmetric intramolecular alkene-alkyne coupling of alkyne-tethered cyclopentenes, affording a library of enantionenriched bicyclo[3.2.1]octadienes in excellent yields and enantioselectivities (mostly >99 % ee). Moreover, the products could undergo an unusual iodination-induced 1,2-acyl migration, forming iodinated bicyclo[3.2.1]octadienes with three vicinal stereocenters. The enone and isolated olefin motifs embedded in the products provide useful handles for downstream elaboration.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jiajia Li
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jie Zhang
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Shu Wu
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yu Zhang
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
10
|
Wang T, Guan JX, Tan YX, Tian P. Cobalt-Catalyzed Chemo- and Stereoselective Arylative Carbocyclization of 1,6-Allenynes. Org Lett 2023; 25:5935-5940. [PMID: 37539986 DOI: 10.1021/acs.orglett.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Different from the well-investigated enynes, transition-metal-catalyzed carbocyclization reactions of allenynes are more attractive as a result of the unique structure and versatile reactivity of allenes. Herein, we report the first cobalt-catalyzed highly chemo- and stereoselective arylative carbocyclization of 1,6-allenynes with arylboronic acids, affording five-membered carbocycles and heterocycles with moderate to high yields, broad substrate scope, and wide functional group compatibility. Moreover, several mechanistic experiments were conducted to gain insight into the reaction process.
Collapse
Affiliation(s)
- Tao Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Ji-Xun Guan
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yun-Xuan Tan
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| |
Collapse
|