1
|
Lee YT. Nexus between RNA conformational dynamics and functional versatility. Curr Opin Struct Biol 2024; 89:102942. [PMID: 39413483 PMCID: PMC11602372 DOI: 10.1016/j.sbi.2024.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
RNA conformational dynamics is pivotal for functional regulations in biology. RNA can function as versatile as protein but adopts multiple distinct structures. In this review, we provide a focused review of the recent advances in studies of RNA conformational dynamics and address some of the misconceptions about RNA structure and its conformational dynamics. We discuss why the traditional methods for structure determination come up short in describing RNA conformational space. The examples discussed provide illustrations of the structure-based mechanisms of RNAs with diverse roles, including viral, long noncoding, and catalytic RNAs, one of which focuses on the debated area of conformational heterogeneity of an RNA structural element in the HIV-1 genome.
Collapse
Affiliation(s)
- Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
2
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2024:10.1038/s41596-024-01072-1. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Zhang X, Li S, Zhang K. Cryo-EM: A window into the dynamic world of RNA molecules. Curr Opin Struct Biol 2024; 88:102916. [PMID: 39232250 DOI: 10.1016/j.sbi.2024.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
RNAs are critical for complex cellular functions, characterized by their structural versatility and ability to undergo conformational transitions in response to cellular cues. The elusive structures of RNAs are being unraveled with unprecedented clarity, thanks to the technological advancements in structural biology, including nuclear magnetic resonance (NMR), X-ray crystallography, cryo-electron microscopy (cryo-EM) etc. This review focuses on examining the revolutionary impact of cryo-EM on our comprehension of RNA structural dynamics, underscoring the technique's contributions to structural biology and envisioning the future trajectory of this rapidly evolving field.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
4
|
Bonilla SL, Jang K. Challenges, advances, and opportunities in RNA structural biology by Cryo-EM. Curr Opin Struct Biol 2024; 88:102894. [PMID: 39121532 DOI: 10.1016/j.sbi.2024.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
RNAs are remarkably versatile molecules that can fold into intricate three-dimensional (3D) structures to perform diverse cellular and viral functions. Despite their biological importance, relatively few RNA 3D structures have been solved, and our understanding of RNA structure-function relationships remains in its infancy. This limitation partly arises from challenges posed by RNA's complex conformational landscape, characterized by structural flexibility, formation of multiple states, and a propensity to misfold. Recently, cryo-electron microscopy (cryo-EM) has emerged as a powerful tool for the visualization of conformationally dynamic RNA-only 3D structures. However, RNA's characteristics continue to pose challenges. We discuss experimental methods developed to overcome these hurdles, including the engineering of modular modifications that facilitate the visualization of small RNAs, improve particle alignment, and validate structural models.
Collapse
Affiliation(s)
- Steve L Bonilla
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, New York, NY, 10065, USA.
| | - Karen Jang
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
5
|
Bonilla SL, Jones AN, Incarnato D. Structural and biophysical dissection of RNA conformational ensembles. Curr Opin Struct Biol 2024; 88:102908. [PMID: 39146886 DOI: 10.1016/j.sbi.2024.102908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
RNA's ability to form and interconvert between multiple secondary and tertiary structures is critical to its functional versatility and the traditional view of RNA structures as static entities has shifted towards understanding them as dynamic conformational ensembles. In this review we discuss RNA structural ensembles and their dynamics, highlighting the concept of conformational energy landscapes as a unifying framework for understanding RNA processes such as folding, misfolding, conformational changes, and complex formation. Ongoing advancements in cryo-electron microscopy and chemical probing techniques are significantly enhancing our ability to investigate multiple structures adopted by conformationally dynamic RNAs, while traditional methods such as nuclear magnetic resonance spectroscopy continue to play a crucial role in providing high-resolution, quantitative spatial and temporal information. We discuss how these methods, when used synergistically, can provide a comprehensive understanding of RNA conformational ensembles, offering new insights into their regulatory functions.
Collapse
Affiliation(s)
- Steve L Bonilla
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| | - Alisha N Jones
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003, USA.
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Qi S, Wang H, Liu G, Qin Q, Gao P, Ying B. Efficient circularization of protein-encoding RNAs via a novel cis-splicing system. Nucleic Acids Res 2024; 52:10400-10415. [PMID: 39162233 PMCID: PMC11417360 DOI: 10.1093/nar/gkae711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as a promising alternative to linear mRNA, owing to their unique properties and potential therapeutic applications, driving the development of novel approaches for their production. This study introduces a cis-splicing system that efficiently produces circRNAs by incorporating a ribozyme core at one end of the precursor, thereby eliminating the need for additional spacer elements between the ribozyme and the gene of interest (GOI). In this cis-splicing system, sequences resembling homologous arms at both ends of the precursor are crucial for forming the P9.0 duplex, which in turn facilitates effective self-splicing and circularization. We demonstrate that the precise recognition of the second transesterification site depends more on the structural characteristics of P9.0 adjacent to the ωG position than on the nucleotide composition of the P9.0-ωG itself. Further optimization of structural elements, like P10 and P1-ex, significantly improves circularization efficiency. The circRNAs generated through the cis-splicing system exhibit prolonged protein expression and minimal activation of the innate immune response. This study provides a comprehensive exploration of circRNA generation via a novel strategy and offers valuable insights into the structural engineering of RNA, paving the way for future advancements in circRNA-based applications.
Collapse
Affiliation(s)
- Shaojun Qi
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Huiming Wang
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Guopeng Liu
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Qianshan Qin
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Peng Gao
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Bo Ying
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| |
Collapse
|
7
|
Li T, He J, Cao H, Zhang Y, Chen J, Xiao Y, Huang SY. All-atom RNA structure determination from cryo-EM maps. Nat Biotechnol 2024:10.1038/s41587-024-02149-8. [PMID: 38396075 DOI: 10.1038/s41587-024-02149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Many methods exist for determining protein structures from cryogenic electron microscopy maps, but this remains challenging for RNA structures. Here we developed EMRNA, a method for accurate, automated determination of full-length all-atom RNA structures from cryogenic electron microscopy maps. EMRNA integrates deep learning-based detection of nucleotides, three-dimensional backbone tracing and scoring with consideration of sequence and secondary structure information, and full-atom construction of the RNA structure. We validated EMRNA on 140 diverse RNA maps ranging from 37 to 423 nt at 2.0-6.0 Å resolutions, and compared EMRNA with auto-DRRAFTER, phenix.map_to_model and CryoREAD on a set of 71 cases. EMRNA achieves a median accuracy of 2.36 Å root mean square deviation and 0.86 TM-score for full-length RNA structures, compared with 6.66 Å and 0.58 for auto-DRRAFTER. EMRNA also obtains a high residue coverage and sequence match of 93.30% and 95.30% in the built models, compared with 58.20% and 42.20% for phenix.map_to_model and 56.45% and 52.3% for CryoREAD. EMRNA is fast and can build an RNA structure of 100 nt within 3 min.
Collapse
Affiliation(s)
- Tao Li
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahua He
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Cao
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Chen
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xiao
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China.
| | - Sheng-You Huang
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Langeberg CJ, Kieft JS. A generalizable scaffold-based approach for structure determination of RNAs by cryo-EM. Nucleic Acids Res 2023; 51:e100. [PMID: 37791881 PMCID: PMC10639074 DOI: 10.1093/nar/gkad784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM) can reveal the structures of large and often dynamic molecules, but smaller biomolecules (≤50 kDa) remain challenging targets due to their intrinsic low signal to noise ratio. Methods to help resolve small proteins have been applied but development of similar approaches to aid in structural determination of small, structured RNA elements have lagged. Here, we present a scaffold-based approach that we used to recover maps of sub-25 kDa RNA domains to 4.5-5.0 Å. While lacking the detail of true high-resolution maps, these maps are suitable for model building and preliminary structure determination. We demonstrate this method helped faithfully recover the structure of several RNA elements of known structure, and that it promises to be generalized to other RNAs without disturbing their native fold. This approach may streamline the sample preparation process and reduce the optimization required for data collection. This first-generation scaffold approach provides a robust system to aid in RNA structure determination by cryo-EM and lays the groundwork for further scaffold optimization to achieve higher resolution.
Collapse
Affiliation(s)
- Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- New York Structural Biology Center, New York, NY 10027, USA
| |
Collapse
|
9
|
Langeberg CJ, Kieft JS. A Generalizable Scaffold-Based Approach for Structure Determination of RNAs by Cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547879. [PMID: 37461535 PMCID: PMC10350027 DOI: 10.1101/2023.07.06.547879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) can reveal the structures of large and often dynamic molecules, but smaller biomolecules remain challenging targets due to their intrinsic low signal to noise ratio. Methods to resolve small proteins have been applied but development of similar approaches for small structured RNA elements have lagged. Here, we present a scaffold-based approach that we used to recover maps of sub-25 kDa RNA domains to 4.5 - 5.0 Å. While lacking the detail of true high-resolution maps, these are suitable for model building and preliminary structure determination. We demonstrate this method faithfully recovers the structure of several RNA elements of known structure, and it promises to be generalized to other RNAs without disturbing their native fold. This approach may streamline the sample preparation process and reduce the optimization required for data collection. This first-generation scaffold approach provides a system for RNA structure determination by cryo-EM and lays the groundwork for further scaffold optimization to achieve higher resolution.
Collapse
|
10
|
Li Y, Arce A, Lucci T, Rasmussen RA, Lucks JB. Dynamic RNA synthetic biology: new principles, practices and potential. RNA Biol 2023; 20:817-829. [PMID: 38044595 PMCID: PMC10730207 DOI: 10.1080/15476286.2023.2269508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/23/2023] [Indexed: 12/05/2023] Open
Abstract
An increased appreciation of the role of RNA dynamics in governing RNA function is ushering in a new wave of dynamic RNA synthetic biology. Here, we review recent advances in engineering dynamic RNA systems across the molecular, circuit and cellular scales for important societal-scale applications in environmental and human health, and bioproduction. For each scale, we introduce the core concepts of dynamic RNA folding and function at that scale, and then discuss technologies incorporating these concepts, covering new approaches to engineering riboswitches, ribozymes, RNA origami, RNA strand displacement circuits, biomaterials, biomolecular condensates, extracellular vesicles and synthetic cells. Considering the dynamic nature of RNA within the engineering design process promises to spark the next wave of innovation that will expand the scope and impact of RNA biotechnologies.
Collapse
Affiliation(s)
- Yueyi Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Anibal Arce
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Tyler Lucci
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Rebecca A. Rasmussen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, IL, USA
| |
Collapse
|