1
|
Koraltan S, Schultheiss K, Bruckner F, Weigand M, Abert C, Suess D, Wintz S. Steerable current-driven emission of spin waves in magnetic vortex pairs. SCIENCE ADVANCES 2024; 10:eado8635. [PMID: 39321298 PMCID: PMC11423888 DOI: 10.1126/sciadv.ado8635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
The efficient excitation of spin waves is a key challenge in the realization of magnonic devices. We demonstrate current-driven generation of spin waves in antiferromagnetically coupled magnetic vortices. We use time-resolved x-ray microscopy to directly image the emission of spin waves upon the application of alternating currents flowing directly through the magnetic stack. Micromagnetic simulations allow us to identify the current-driven Oersted field as the main origin of excitation, in contrast to spin-transfer torques. In our case, these internal Oersted fields have an orders of magnitude higher spin-wave excitation efficiency than commonly used stripline antennas. For magnetostrictive materials, we furthermore demonstrate that the direction of magnon propagation can be steered by increasing the excitation amplitude, which modifies the underlying magnetization profile through an additional anisotropy. The demonstrated methods allow for the efficient and tunable excitation of spin waves, marking a substantial advance concerning the design of magnonic devices.
Collapse
Affiliation(s)
- Sabri Koraltan
- Faculty of Physics, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- Research Platform MMM Mathematics-Magnetism-Materials, University of Vienna, A-1090 Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, A-1090 Vienna, Austria
| | - Katrin Schultheiss
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Florian Bruckner
- Faculty of Physics, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
| | - Markus Weigand
- Institut für Nanospektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Claas Abert
- Faculty of Physics, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- Research Platform MMM Mathematics-Magnetism-Materials, University of Vienna, A-1090 Vienna, Austria
| | - Dieter Suess
- Faculty of Physics, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- Research Platform MMM Mathematics-Magnetism-Materials, University of Vienna, A-1090 Vienna, Austria
| | - Sebastian Wintz
- Institut für Nanospektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
- Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Joglekar SS, Baumgaertl K, Mucchietto A, Berger F, Grundler D. Reversing the magnetization of 50-nm-wide ferromagnets by ultrashort magnons in thin-film yttrium iron garnet. NANOSCALE HORIZONS 2024. [PMID: 39169812 PMCID: PMC11339637 DOI: 10.1039/d4nh00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Spin waves (magnons) can enable neuromorphic computing by which one aims at overcoming limitations inherent to conventional electronics and the von Neumann architecture. Encoding magnon signal by reversing magnetization of a nanomagnetic memory bit is pivotal to realize such novel computing schemes efficiently. A magnonic neural network was recently proposed consisting of differently configured nanomagnets that control nonlinear magnon interference in an underlying yttrium iron garnet (YIG) film [Papp et al., Nat. Commun., 2021, 12, 6422]. In this study, we explore the nonvolatile encoding of magnon signals by switching the magnetization of periodic and aperiodic arrays (gratings) of Ni81Fe19 (Py) nanostripes with widths w between 50 nm and 200 nm. Integrating 50-nm-wide nanostripes with a coplanar waveguide, we excited magnons having a wavelength λ of ≈100 nm. At a small spin-precessional power of 11 nW, these ultrashort magnons switch the magnetization of 50-nm-wide Py nanostripes after they have propagated over 25 μm in YIG in an applied field. We also demonstrate the magnetization reversal of nanostripes patterned in an aperiodic sequence. We thereby show that the magnon-induced reversal happens regardless of the width and periodicity of the nanostripe gratings. Our study enlarges substantially the parameter regime for magnon-induced nanomagnet reversal on YIG and is important for realizing in-memory computing paradigms making use of magnons with ultrashort wavelengths at low power consumption.
Collapse
Affiliation(s)
- Shreyas S Joglekar
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Korbinian Baumgaertl
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Andrea Mucchietto
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Francis Berger
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Dirk Grundler
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
- Institute of Electrical and Micro Engineering (IEM), EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Flebus B, Grundler D, Rana B, Otani Y, Barsukov I, Barman A, Gubbiotti G, Landeros P, Akerman J, Ebels U, Pirro P, Demidov VE, Schultheiss K, Csaba G, Wang Q, Ciubotaru F, Nikonov DE, Che P, Hertel R, Ono T, Afanasiev D, Mentink J, Rasing T, Hillebrands B, Kusminskiy SV, Zhang W, Du CR, Finco A, van der Sar T, Luo YK, Shiota Y, Sklenar J, Yu T, Rao J. The 2024 magnonics roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:363501. [PMID: 38565125 DOI: 10.1088/1361-648x/ad399c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Magnonicsis a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications and advanced computational schemes. Spin waves, also known as magnons, carry spin angular momenta that allow for the transmission, storage and processing of information without moving charges. In integrated circuits, magnons enable on-chip data processing at ultrahigh frequencies without the Joule heating, which currently limits clock frequencies in conventional data processors to a few GHz. Recent developments in the field indicate that functional magnonic building blocks for in-memory computation, neural networks and Ising machines are within reach. At the same time, the miniaturization of magnonic circuits advances continuously as the synergy of materials science, electrical engineering and nanotechnology allows for novel on-chip excitation and detection schemes. Such circuits can already enable magnon wavelengths of 50 nm at microwave frequencies in a 5G frequency band. Research into non-charge-based technologies is urgently needed in view of the rapid growth of machine learning and artificial intelligence applications, which consume substantial energy when implemented on conventional data processing units. In its first part, the 2024 Magnonics Roadmap provides an update on the recent developments and achievements in the field of nano-magnonics while defining its future avenues and challenges. In its second part, the Roadmap addresses the rapidly growing research endeavors on hybrid structures and magnonics-enabled quantum engineering. We anticipate that these directions will continue to attract researchers to the field and, in addition to showcasing intriguing science, will enable unprecedented functionalities that enhance the efficiency of alternative information technologies and computational schemes.
Collapse
Affiliation(s)
- Benedetta Flebus
- Department of Physics, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, United States of America
| | - Dirk Grundler
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Institute of Electrical and Micro Engineering (IEM), EPFL, Lausanne 1015, Switzerland
| | - Bivas Rana
- Institute of Spintronics and Quantum Information (ISQI), Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - YoshiChika Otani
- Center for Emergent Matter Science, RIKEN, Wako, Japan
- Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwa, Japan
| | - Igor Barsukov
- Department of Physics and Astronomy, University of California, Riverside, United States of America
| | - Anjan Barman
- S N Bose National Centre for Basic Sciences, Salt Lake, Sector III, Kolkata, India
| | | | - Pedro Landeros
- Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| | - Johan Akerman
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Ursula Ebels
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble-INP, SPINTEC, Grenoble 38000, France
| | - Philipp Pirro
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | | | | | - Gyorgy Csaba
- Pázmány Péter Catholic University, Budapest, Hungary
| | - Qi Wang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | - Dmitri E Nikonov
- Components Research, Intel Corp., Hillsboro, OR 97124, United States of America
| | - Ping Che
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau 91767, France
| | - Riccardo Hertel
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, Strasbourg 67000, France
| | - Teruo Ono
- Institute for Chemical Research, Kyoto University, Center for Spintronics Research Network, Kyoto University, Uji, Japan
| | - Dmytro Afanasiev
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Johan Mentink
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Theo Rasing
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Burkard Hillebrands
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Silvia Viola Kusminskiy
- RWTH Aachen University, Aachen and Max Planck Institute for the Physics of Light, Erlangen, Germany
| | - Wei Zhang
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Chunhui Rita Du
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Aurore Finco
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier 34095, France
| | - Toeno van der Sar
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, The Netherlands
| | - Yunqiu Kelly Luo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, United States of America
- Kavli Institute at Cornell, Ithaca, NY 14853, United States of America
| | - Yoichi Shiota
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Joseph Sklenar
- Wayne State University, Detroit, MI, United States of America
| | - Tao Yu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jinwei Rao
- ShanghaiTech University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Mucchietto A, Baumgaertl K, Grundler D. Magnon-Assisted Magnetization Reversal of Ni 81Fe 19 Nanostripes on Y 3Fe 5O 12 with Different Interfaces. ACS NANO 2024; 18:8641-8648. [PMID: 38488387 DOI: 10.1021/acsnano.3c06353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Magnetic bit writing by short-wave magnons without conversion to the electrical domain is expected to be a game-changer for in-memory computing architectures. Recently, the reversal of nanomagnets by propagating magnons was demonstrated. However, experiments have not yet explored different wavelengths and the nonlinear excitation regime of magnons required for computational tasks. We report on the magnetization reversal of individual 20 nm thick Ni81Fe19 (Py) nanostripes integrated onto 113 nm thick yttrium iron garnet (YIG). We suppress direct interlayer exchange coupling by an intermediate layer, such as Cu and SiO2. By exciting magnons in YIG with wavelengths λ down to 148 nm we observe the reversal of the integrated ferromagnets in a small external field of 14 mT. Magnons with a small wavelength of λ = 195 nm, i.e., twice the width of the Py nanostripes, induced the reversal at a spin-precessional power of only about 1 nW after propagating over 15 μm in YIG. Such small power value has not been reported so far. Considerations based on dynamic dipolar coupling explain the observed wavelength dependence of the magnon-induced reversal efficiency. For an increased power, the stripes reversed in an external field of only about 1 mT. Our findings are important for the practical implementation of nonvolatile storage of broadband magnon signals in YIG by means of bistable nanomagnets without the need of an appreciable global magnetic field.
Collapse
Affiliation(s)
- Andrea Mucchietto
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Korbinian Baumgaertl
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Dirk Grundler
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Electrical and Micro Engineering (IEM), 'Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Guo H, Deenen AJM, Xu M, Hamdi M, Grundler D. Realization and Control of Bulk and Surface Modes in 3D Nanomagnonic Networks by Additive Manufacturing of Ferromagnets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303292. [PMID: 37450937 DOI: 10.1002/adma.202303292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The high-density integration in information technology fuels the research on functional 3D nanodevices. Particularly ferromagnets promise multifunctional 3D devices for nonvolatile data storage, high-speed data processing, and non-charge-based logic operations via spintronics and magnonics concepts. However, 3D nanofabrication of ferromagnets is extremely challenging. In this work, an additive manufacturing methodology is reported, and unprecedented 3D ferromagnetic nanonetworks with a woodpile-structure unit cell are fabricated. The collective spin dynamics (magnons) at frequencies up to 25 GHz are investigated by Brillouin Light Scattering (BLS) microscopy and micromagnetic simulations. A clear discrepancy of about 10 GHz is found between the bulk and surface modes, which are engineered by different unit cell sizes in the Ni-based nanonetworks. The angle- and spatially-dependent modes demonstrate opportunities for multi-frequency signal processing in 3D circuits via magnons. The developed synthesis route will allow one to create 3D magnonic crystals with chiral unit cells, which are a prerequisite toward surface modes with topologically protected properties.
Collapse
Affiliation(s)
- Huixin Guo
- École Polytechnique Fédérale de Lausanne (EPFL), School of Engineering, Institute of Materials, Laboratory of Nanoscale Magnetic Materials and Magnonics, Lausanne, 1015, Switzerland
| | - Axel J M Deenen
- École Polytechnique Fédérale de Lausanne (EPFL), School of Engineering, Institute of Materials, Laboratory of Nanoscale Magnetic Materials and Magnonics, Lausanne, 1015, Switzerland
| | - Mingran Xu
- École Polytechnique Fédérale de Lausanne (EPFL), School of Engineering, Institute of Materials, Laboratory of Nanoscale Magnetic Materials and Magnonics, Lausanne, 1015, Switzerland
| | - Mohammad Hamdi
- École Polytechnique Fédérale de Lausanne (EPFL), School of Engineering, Institute of Materials, Laboratory of Nanoscale Magnetic Materials and Magnonics, Lausanne, 1015, Switzerland
| | - Dirk Grundler
- École Polytechnique Fédérale de Lausanne (EPFL), School of Engineering, Institute of Materials, Laboratory of Nanoscale Magnetic Materials and Magnonics, Lausanne, 1015, Switzerland
- École Polytechnique Fédérale de Lausanne, School of Engineering, Institute of Electrical and Micro Engineering, Lausanne, 1015, Switzerland
| |
Collapse
|