1
|
Nabika T, Nagata K, Mizumaki M, Katakami S, Okada M. Bayesian active learning with model selection for spectral experiments. Sci Rep 2024; 14:3680. [PMID: 38355775 PMCID: PMC10866988 DOI: 10.1038/s41598-024-54329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
Active learning is a common approach to improve the efficiency of spectral experiments. Model selection from the candidates and parameter estimation are often required in the analysis of spectral experiments. Therefore, we proposed an active learning with model selection method using multiple parametric models as learning models. Important points for model selection and its parameter estimation were actively measured using Bayesian posterior distribution. The present study demonstrated the effectiveness of our proposed method for spectral deconvolution and Hamiltonian selection in X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Tomohiro Nabika
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Kenji Nagata
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047, Japan
| | - Masaichiro Mizumaki
- Faculty of Science, Course for Physical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shun Katakami
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Masato Okada
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
2
|
Pithan L, Starostin V, Mareček D, Petersdorf L, Völter C, Munteanu V, Jankowski M, Konovalov O, Gerlach A, Hinderhofer A, Murphy B, Kowarik S, Schreiber F. Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1064-1075. [PMID: 37850560 PMCID: PMC10624034 DOI: 10.1107/s160057752300749x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/26/2023] [Indexed: 10/19/2023]
Abstract
Recently, there has been significant interest in applying machine-learning (ML) techniques to the automated analysis of X-ray scattering experiments, due to the increasing speed and size at which datasets are generated. ML-based analysis presents an important opportunity to establish a closed-loop feedback system, enabling monitoring and real-time decision-making based on online data analysis. In this study, the incorporation of a combined one-dimensional convolutional neural network (CNN) and multilayer perceptron that is trained to extract physical thin-film parameters (thickness, density, roughness) and capable of taking into account prior knowledge is described. ML-based online analysis results are processed in a closed-loop workflow for X-ray reflectometry (XRR), using the growth of organic thin films as an example. Our focus lies on the beamline integration of ML-based online data analysis and closed-loop feedback. Our data demonstrate the accuracy and robustness of ML methods for analyzing XRR curves and Bragg reflections and its autonomous control over a vacuum deposition setup.
Collapse
Affiliation(s)
- Linus Pithan
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Vladimir Starostin
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - David Mareček
- Physikalische und Theoretische Chemie, Universität Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Lukas Petersdorf
- Institut für Experimentelle und Angewandte Physik, Universität Kiel, Leibnizstrasse 19, 24118 Kiel, Germany
| | - Constantin Völter
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Valentin Munteanu
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Maciej Jankowski
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Oleg Konovalov
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Alexander Gerlach
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Alexander Hinderhofer
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Bridget Murphy
- Institut für Experimentelle und Angewandte Physik, Universität Kiel, Leibnizstrasse 19, 24118 Kiel, Germany
| | - Stefan Kowarik
- Physikalische und Theoretische Chemie, Universität Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|