1
|
O'Brien C, Jones CL. Unraveling lipid metabolism for acute myeloid leukemia therapy. Curr Opin Hematol 2025; 32:77-86. [PMID: 39585293 DOI: 10.1097/moh.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight the importance of lipids' intricate and interwoven role in mediating diverse acute myeloid leukemia (AML) processes, as well as potentially novel lipid targeting strategies. This review will focus on new studies of lipid metabolism in human leukemia, particularly highlighting work in leukemic stem cells (LSCs), where lipids were assessed directly as a metabolite. RECENT FINDINGS Lipid metabolism is essential to support LSC function and AML survival through diverse mechanisms including supporting energy production, membrane composition, signaling pathways, and ferroptosis. Recent work has highlighted the role of lipid rewiring in metabolic plasticity which can underlie therapy response, the impact of cellular and genetic heterogeneity in AML on lipid metabolism, and the discovery of noncanonical roles of lipid related proteins in AML. SUMMARY Recent findings around lipid metabolism clearly demonstrates their importance to our understanding and therapeutic targeting of AML. We have only begun to unravel the regulation and utilization of lipids in this disease. Further, understanding the layered dynamics of lipid homeostasis could provide novel opportunities to target lipid metabolism in AML and LSCs with the potential of improving outcomes for patients with AML.
Collapse
Affiliation(s)
- Cristiana O'Brien
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Courtney L Jones
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
2
|
Qiu Y, Su Y, Xie E, Cheng H, Du J, Xu Y, Pan X, Wang Z, Chen DG, Zhu H, Greenberg PD, Li G. Mannose metabolism reshapes T cell differentiation to enhance anti-tumor immunity. Cancer Cell 2025; 43:103-121.e8. [PMID: 39642888 PMCID: PMC11756673 DOI: 10.1016/j.ccell.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Cellular metabolic status profoundly influences T cell differentiation, persistence, and anti-tumor efficacy. Our single-cell metabolic analyses of T cells reveal that diminished mannose metabolism is a prominent feature of T cell dysfunction. Conversely, experimental augmentation/restoration of mannose metabolism in adoptively transferred T cells via D-mannose supplementation enhances anti-tumor activity and restricts exhaustion differentiation both in vitro and in vivo. Mechanistically, D-mannose treatment induces intracellular metabolic programming and increases the O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation of β-catenin, which preserves Tcf7 expression and epigenetic stemness, thereby promoting stem-like programs in T cells. Furthermore, in vitro expansion with D-mannose supplementation yields T cell products for adoptive therapy with stemness characteristics, even after extensive long-term expansion, that exhibits enhanced anti-tumor efficacy. These findings reveal cell-intrinsic mannose metabolism as a physiological regulator of CD8+ T cell fate, decoupling proliferation/expansion from differentiation, and underscoring the therapeutic potential of mannose modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yapeng Su
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA; Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Jing Du
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yue Xu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Xiaoli Pan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Zhe Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Daniel G Chen
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA; Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hong Zhu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215123, Jiangsu, China
| | - Philip D Greenberg
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
3
|
Bian R, Shang Y, Xu N, Liu B, Ma Y, Li H, Chen J, Yao Q. HDAC inhibitor enhances ferroptosis susceptibility of AML cells by stimulating iron metabolism. Cell Signal 2025; 127:111583. [PMID: 39756501 DOI: 10.1016/j.cellsig.2024.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/14/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Acute Myeloid Leukemia (AML) are challenging blood cancers with limited long-term survival rates, necessitating novel therapeutic strategies. This study explored the role of Histone deacetylase (HDAC) inhibitors in enhancing ferroptosis in AML cells by modulating iron metabolism. We demonstrated that HDAC inhibitors (Entinostat and Vorinostat) sensitize AML cells to ferroptosis both in vitro and in vivo. Mechanistically, we show that HDAC inhibitor treatment upregulated the expression of iron metabolism genes that lead to increased labile iron pool. Notably, NCOA4, a ferritin degradation mediator, and HMOX1/2 proteins, involved in heme breakdown, were identified as critical contributors to this process. The functional role of these genes was confirmed through CRISPR-Cas9 mediated knockouts, which significantly rescued cells from HDAC-induced ferroptosis sensitivity. Our results suggest a novel therapeutic approach for AML, where combining HDAC inhibitors with ferroptosis inducers could exploit the disrupted iron metabolism in AML cells. This study highlights the potential of HDAC inhibitors to modulate iron metabolism pathways, offering new insights into the treatment of these malignancies.
Collapse
Affiliation(s)
- Ruipeng Bian
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Yingying Shang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Nahua Xu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Baiping Liu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Yanni Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Jieping Chen
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Dembitz V, Lawson H, Burt R, Natani S, Philippe C, James SC, Atkinson S, Durko J, Wang LM, Campos J, Magee AMS, Woodley K, Austin MJ, Rio-Machin A, Casado P, Bewicke-Copley F, Rodriguez Blanco G, Pereira-Martins D, Oudejans L, Boet E, von Kriegsheim A, Schwaller J, Finch AJ, Patel B, Sarry JE, Tamburini J, Schuringa JJ, Hazlehurst L, Copland Iii JA, Yuneva M, Peck B, Cutillas P, Fitzgibbon J, Rouault-Pierre K, Kranc K, Gallipoli P. Stearoyl-CoA desaturase inhibition is toxic to acute myeloid leukemia displaying high levels of the de novo fatty acid biosynthesis and desaturation. Leukemia 2024; 38:2395-2409. [PMID: 39187579 PMCID: PMC11518998 DOI: 10.1038/s41375-024-02390-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Identification of specific and therapeutically actionable vulnerabilities, ideally present across multiple mutational backgrounds, is needed to improve acute myeloid leukemia (AML) patients' outcomes. We identify stearoyl-CoA desaturase (SCD), the key enzyme in fatty acid (FA) desaturation, as prognostic of patients' outcomes and, using the clinical-grade inhibitor SSI-4, show that SCD inhibition (SCDi) is a therapeutic vulnerability across multiple AML models in vitro and in vivo. Multiomic analysis demonstrates that SCDi causes lipotoxicity, which induces AML cell death via pleiotropic effects. Sensitivity to SCDi correlates with AML dependency on FA desaturation regardless of mutational profile and is modulated by FA biosynthesis activity. Finally, we show that lipotoxicity increases chemotherapy-induced DNA damage and standard chemotherapy further sensitizes AML cells to SCDi. Our work supports developing FA desaturase inhibitors in AML while stressing the importance of identifying predictive biomarkers of response and biologically validated combination therapies to realize their full therapeutic potential.
Collapse
Affiliation(s)
- Vilma Dembitz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Physiology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Hannah Lawson
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Richard Burt
- Division of Cell and Molecular Biology, Imperial College London, London, UK
- Francis Crick Institute, London, UK
| | - Sirisha Natani
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Céline Philippe
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- INSERM U1242, University of Rennes, Rennes, France
| | - Sophie C James
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Samantha Atkinson
- Division of Cell and Molecular Biology, Imperial College London, London, UK
- Francis Crick Institute, London, UK
| | - Jozef Durko
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lydia M Wang
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Joana Campos
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Aoife M S Magee
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Keith Woodley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michael J Austin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ana Rio-Machin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Experimental Hematology Lab, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Pedro Casado
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Findlay Bewicke-Copley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Giovanny Rodriguez Blanco
- The University of Edinburgh MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Diego Pereira-Martins
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lieve Oudejans
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, LabEx Toucan, Toulouse, France
- Équipe labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Alex von Kriegsheim
- The University of Edinburgh MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Juerg Schwaller
- University Children's Hospital and Department of Biomedicine (DBM), University of Basel, Basel, Switzerland
| | - Andrew J Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Bela Patel
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, LabEx Toucan, Toulouse, France
- Équipe labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Jerome Tamburini
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Barrie Peck
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Pedro Cutillas
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jude Fitzgibbon
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Kamil Kranc
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Muhs C, Alshamleh I, Richter C, Serve H, Schwalbe H. Mapping Natural Sugars Metabolism in Acute Myeloid Leukaemia Using 2D Nuclear Magnetic Resonance Spectroscopy. Cancers (Basel) 2024; 16:3576. [PMID: 39518017 PMCID: PMC11545164 DOI: 10.3390/cancers16213576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolism plays a central role in cancer progression. Rewiring glucose metabolism is essential for fulfilling the high energy and biosynthetic demands as well as for the development of drug resistance. Nevertheless, the role of other diet-abundant natural sugars is not fully understood. In this study, we performed a comprehensive 2D NMR spectroscopy tracer-based assay with a panel of 13C-labelled sugars (glucose, fructose, galactose, mannose and xylose). We assigned over 100 NMR signals from metabolites derived from each sugar and mapped them to metabolic pathways, uncovering two novel findings. First, we demonstrated that mannose has a semi-identical metabolic profile to that of glucose with similar label incorporation patterns. Second, next to the known role of fructose in driving one-carbon metabolism, we explained the equally important contribution of galactose to this pathway. Interestingly, we demonstrated that cells growing with either fructose or galactose became less sensitive to certain one-carbon metabolism inhibitors such as 5-Flurouracil and SHIN1. In summary, this study presents the differential metabolism of natural sugars, demonstrating that mannose has a comparable profile to that of glucose. Conversely, galactose and fructose contribute to a greater extent to one-carbon metabolism, which makes them important modulators for inhibitors targeting this pathway. To our knowledge, this is the first NMR study to comprehensively investigate the metabolism of key natural sugars in AML and cancer.
Collapse
Affiliation(s)
- Christina Muhs
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
| | - Islam Alshamleh
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany;
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
| | - Hubert Serve
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany;
- University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany;
| |
Collapse
|
6
|
Harada Y. Manipulating mannose metabolism as a potential anticancer strategy. FEBS J 2024. [PMID: 39128015 DOI: 10.1111/febs.17230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
Cancer cells acquire metabolic advantages over their normal counterparts regarding the use of nutrients for sustained cell proliferation and cell survival in the tumor microenvironment. Notable among the metabolic traits in cancer cells is the Warburg effect, which is a reprogrammed form of glycolysis that favors the rapid generation of ATP from glucose and the production of biological macromolecules by diverting glucose into various metabolic intermediates. Meanwhile, mannose, which is the C-2 epimer of glucose, has the ability to dampen the Warburg effect, resulting in slow-cycling cancer cells that are highly susceptible to chemotherapy. This anticancer effect of mannose appears when its catabolism is compromised in cancer cells. Moreover, de novo synthesis of mannose within cancer cells has also been identified as a potential target for enhancing chemosensitivity through targeting glycosylation pathways. The underlying mechanisms by which alterations in mannose metabolism induce cancer cell vulnerability are just beginning to emerge. This review summarizes the current state of our knowledge of mannose metabolism and provides insights into its manipulation as a potential anticancer strategy.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Research Institute, Osaka International Cancer Institute, Japan
| |
Collapse
|
7
|
Luo Y, Bai XY, Zhang L, Hu QQ, Zhang N, Cheng JZ, Hou MZ, Liu XL. Ferroptosis in Cancer Therapy: Mechanisms, Small Molecule Inducers, and Novel Approaches. Drug Des Devel Ther 2024; 18:2485-2529. [PMID: 38919962 PMCID: PMC11198730 DOI: 10.2147/dddt.s472178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Ferroptosis, a unique form of programmed cell death, is initiated by an excess of iron accumulation and lipid peroxidation-induced damage. There is a growing body of evidence indicating that ferroptosis plays a critical role in the advancement of tumors. The increased metabolic activity and higher iron levels in tumor cells make them particularly vulnerable to ferroptosis. As a result, the targeted induction of ferroptosis is becoming an increasingly promising approach for cancer treatment. This review offers an overview of the regulatory mechanisms of ferroptosis, delves into the mechanism of action of traditional small molecule ferroptosis inducers and their effects on various tumors. In addition, the latest progress in inducing ferroptosis using new means such as proteolysis-targeting chimeras (PROTACs), photodynamic therapy (PDT), sonodynamic therapy (SDT) and nanomaterials is summarized. Finally, this review discusses the challenges and opportunities in the development of ferroptosis-inducing agents, focusing on discovering new targets, improving selectivity, and reducing toxic and side effects.
Collapse
Affiliation(s)
- YiLin Luo
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xin Yue Bai
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Lei Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Qian Qian Hu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ning Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Jun Zhi Cheng
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ming Zheng Hou
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xiao Long Liu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| |
Collapse
|
8
|
Mi Y, Shan H, Wang B, Tang H, Jia J, Liu X, Yang Q. Genipin inhibits proliferation of gastric cancer cells by inducing ferroptosis: an integrated study of network pharmacology and bioinformatics study. Med Oncol 2024; 41:46. [PMID: 38175425 DOI: 10.1007/s12032-023-02283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Ferroptosis has been demonstrated to suppress cancer development and is targeted for cancer therapy. Genipin, an iridoid constituent in Gardeniae Fructus, has been reported to exert anti-cancer abilities. However, whether genipin could induce ferroptosis remains unclear. The purpose of this study is to explore the anti-gastric cancer (GC) effects of genipin by inducing ferroptosis and to identify the potential targets. CCK-8 and colony formation assays were performed to evaluate the anti-GC effects of genipin. Flowcytometry and western blot were used to indicate ferroptosis-inducing ability of genipin. The potential targets of genipin were analyzed by network pharmacology, screened using UALCAN and KM-plotter database and evaluated by molecular docking. The results showed that genipin inhibited cell viability and proliferation of GC cells. Genipin treatment decreased levels of GPX4 and SLC7A11, induced accumulation of lipid peroxidation intracellularly and led to ferroptosis in GC cells. Network pharmacology analysis identified that lipid- and ROS-related pathways involved in ferroptosis ranked high among genipin-GC common targets. Data from UALCAN and KM-plotter database demonstrated that expression levels of ferroptosis-related targets, including AURKA, BCAT2, DHODH, and GPI, increased in GC tissues and the higher levels of the above four targets were related to tumor stage, tumor grade, and poor prognosis. Among these four targets, AURKA, BCAT2, and DHODH were confirmed by molecular docking with binding energies less than - 5. Taken together, our study demonstrates that genipin could exert anti-GC ability by inducing ferroptosis and provides evidence for the potential application of genipin in GC treatment.
Collapse
Affiliation(s)
- Yalu Mi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Institute of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hui Shan
- Institute of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Bo Wang
- Department of Traditional Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Huidi Tang
- Institute of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jihui Jia
- Institute of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Infection and Immunity, Shandong University, Jinan, 250012, Shandong, China
| | - Xijian Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| | - Qing Yang
- Institute of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Infection and Immunity, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Dembitz V, Durko J, Campos J, James SC, Lawson H, Kranc KR, Gallipoli P. Immunodeficient NBSGW mouse strain allows chemotherapy modeling in AML patient-derived xenografts. Hemasphere 2024; 8:e28. [PMID: 38434525 PMCID: PMC10878184 DOI: 10.1002/hem3.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 03/05/2024] Open
Affiliation(s)
- Vilma Dembitz
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
- Present address:
Department of Physiology and Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Jozef Durko
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Joana Campos
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Sophie C. James
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Hannah Lawson
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Kamil R. Kranc
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
- The Institute of Cancer ResearchLondonUK
| | - Paolo Gallipoli
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|