1
|
Liu Y, Qian J, Lu B, Hu J, He Y, Shen J, Tang S. Arbuscular mycorrhizal symbiosis enhances the accumulation of plant-derived carbon in soil organic carbon by regulating the biosynthesis of plant biopolymers and soil metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109230. [PMID: 39461054 DOI: 10.1016/j.plaphy.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Plant-derived carbon (C) is a critical constituent of particulate organic carbon (POC) and plays an essential role in soil organic carbon (SOC) sequestration. Yet, how arbuscular mycorrhizal fungi (AMF) control the contribution of plant-derived C to SOC storage through two processes (biosynthesis of plant biopolymers and soil metabolism) remains poorly understood. Here, we utilized transcriptome analysis to examine the effects of AMF on P. communis roots. Under the AM symbiosis, root morphological growth and tolerance to stress were strengthened, and the biosynthetic pathways of key plant biopolymers (long-chain fatty acids, cutin, suberin, and lignin) contributing to the plant-derived C were enhanced. In the subsequent metabolic processes, AMF increased soil metabolites contributing to plant-derived C (such as syringic acid) and altered soil metabolic pathways, including carbohydrate metabolism. Additionally, C-acquiring soil extracellular enzyme activities were enhanced by AMF, which could affect the stabilization of plant-derived C in soil. The contents of POC (21.71 g kg-1 soil), MAOC (10.75 g kg-1 soil), and TOC (32.47 g kg-1 soil) in soil were significantly increased by AMF. The concentrations of plant-derived C and microbial-derived C were quantified based on biomarker analysis. AMF enhanced the content of plant-derived C in both POC and MAOC fractions. What's more, plant-derived C presented the highest level in the POC fraction under the AMF treatment. This research broadens our understanding of the mechanism through which plant-derived C contributes to the accumulation of POC and SOC induced by AM symbiosis, and evidences the benefits of AMF application in SOC sequestration.
Collapse
Affiliation(s)
- Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China.
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Jing Hu
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, 32816, Orlando, Fl, USA
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Junwei Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 210098, Nanjing, People's Republic of China; College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Chakrawal A, Lindahl BD, Manzoni S. Modelling optimal ligninolytic activity during plant litter decomposition. THE NEW PHYTOLOGIST 2024; 243:866-880. [PMID: 38343140 DOI: 10.1111/nph.19572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 07/05/2024]
Abstract
A large fraction of plant litter comprises recalcitrant aromatic compounds (lignin and other phenolics). Quantifying the fate of aromatic compounds is difficult, because oxidative degradation of aromatic carbon (C) is a costly but necessary endeavor for microorganisms, and we do not know when gains from the decomposition of aromatic C outweigh energetic costs. To evaluate these tradeoffs, we developed a litter decomposition model in which the aromatic C decomposition rate is optimized dynamically to maximize microbial growth for the given costs of maintaining ligninolytic activity. We tested model performance against > 200 litter decomposition datasets collected from published literature and assessed the effects of climate and litter chemistry on litter decomposition. The model predicted a time-varying ligninolytic oxidation rate, which was used to calculate the lag time before the decomposition of aromatic C is initiated. Warmer conditions increased decomposition rates, shortened the lag time of aromatic C oxidation, and improved microbial C-use efficiency by decreasing the costs of oxidation. Moreover, a higher initial content of aromatic C promoted an earlier start of aromatic C decomposition under any climate. With this contribution, we highlight the application of eco-evolutionary approaches based on optimized microbial life strategies as an alternative parametrization scheme for litter decomposition models.
Collapse
Affiliation(s)
- Arjun Chakrawal
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, 10691, Stockholm, Sweden
| | - Björn D Lindahl
- Swedish University of Agricultural Sciences, Department of Soil and Environment, 75007, Uppsala, Sweden
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
3
|
Zhang X, Dong Y, Li Y, Wu X, Chen S, Wang M, Li Y, Ge Z, Zhang M, Mao L. The evolutionary adaptation of wood-decay macrofungi to host gymnosperms differs from that to host angiosperms. Ecol Evol 2024; 14:e70019. [PMID: 39026950 PMCID: PMC11255378 DOI: 10.1002/ece3.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Wood-decay macrofungi play a vital role in forest ecosystems by promoting nutrient cycling and soil structure, and their evolution is closely related to their host plants. This study investigates the potential evolutionary adaptation of wood-decay macrofungi to their host plants, focusing on whether these relationships differ between gymnosperms and angiosperms. While previous research has suggested non-random associations between specific fungi and plant deadwood, direct evidence of evolutionary adaptation has been lacking. Our study, conducted in a subtropical region, utilized metabarcoding techniques to identify deadwood species and associated fungi. We found significant evidence of evolutionary adaptation when considering all sampled species collectively. However, distinct patterns emerged when comparing angiosperms and gymnosperms: a significant evolutionary adaptation was observed of wood-decay macrofungi to angiosperms, but not to gymnosperms. This variation may be due to the longer evolutionary history and more stable species interactions of gymnosperms, as indicated by a higher modularity coefficient (r = .452), suggesting greater specialization. In contrast, angiosperms, being evolutionarily younger, displayed less stable and more coevolving interactions with fungi, reflected in a lower modularity coefficient (r = .387). Our findings provide the first direct evidence of differential evolutionary adaptation dynamics of these fungi to angiosperms versus gymnosperms, enhancing our understanding of forest ecosystem carbon cycling and resource management.
Collapse
Affiliation(s)
- Xuetong Zhang
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Yuran Dong
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Yuying Li
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Xiuping Wu
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Siyu Chen
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Mingyuan Wang
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Yao Li
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Zhiwei Ge
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Min Zhang
- College of Life ScienceNanjing Forestry UniversityNanjingChina
| | - Lingfeng Mao
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
4
|
Zhou P, Tian L, Siddique MS, Song S, Graham NJD, Zhu YG, Yu W. Divergent Fate and Roles of Dissolved Organic Matter from Spatially Varied Grassland Soils in China During Long-Term Biogeochemical Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1164-1176. [PMID: 38164759 DOI: 10.1021/acs.est.3c08046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Terrestrial dissolved organic matter (DOM) is critical to global carbon and nutrient cycling, climate change, and human health. However, how the spatial and compositional differences of soil DOM affect its dynamics and fate in water during the carbon cycle is largely unclear. Herein, the biodegradation of DOM from 14 spatially distributed grassland soils in China with diverse organic composition was investigated by 165 days of incubation experiments. The results showed that although the high humified fraction (high-HS) regions were featured by high humic-like fractions of 4-25 kDa molecular weight, especially the abundant condensed aromatics and tannins, they unexpectedly displayed greater DOM degradation during 45-165 days. In contrast, the unique proteinaceous and 25-100 kDa fractions enriched in the low humified fraction (low-HS) regions were drastically depleted and improved the decay of bulk DOM but only during 0-45 days. Together, DOM from the high-HS regions would cause lower CO2 outgassing to the atmosphere but higher organic loads for drinking water production in the short term than that from the low-HS regions. However, this would be reversed for the two regions during the long-term transformation processes. These findings highlight the importance of spatial and temporal variability of DOM biogeochemistry to mitigate the negative impacts of grassland soil DOM on climate, waters, and humans.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shian Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|