1
|
Wang L, Zhou PP, Xie D, Yue Q, Sun HZ, Yang SD, Wang GW. Dynamic Kinetic Activation of Aziridines Enables Radical-Polar Crossover (4 + 3) Cycloaddition with 1,3-Dienes. J Am Chem Soc 2025. [PMID: 39791566 DOI: 10.1021/jacs.4c15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines. Various types of aziridines, including 2-phenyl, 2-carbonyl, 2-alkyl, and disubstituted aziridines, consistently cleave their more sterically hindered C-N bonds to generate 1,3-radical anion intermediates. These intermediates participate in a highly regioselective 1,4-Heck/allylic substitution cascade with aromatic branched 1,3-dienes, resulting in a radical-polar crossover (4 + 3) cycloaddition that produces seven-membered azepine products. This approach not only complements traditional dipolar cycloaddition, in which aziridines typically act as zwitterionic 1,3-dipoles, but also introduces an unusual cycloaddition mode for 1,3-dienes. Experimental investigations and density functional theory (DFT) calculations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qian Yue
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao-Zheng Sun
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Somprasong S, Wan B, Harutyunyan SR. Enantioselective nickel-catalyzed electrochemical reductive conjugate alkenylation of α,β-unsaturated ketones. Chem Sci 2025; 16:802-808. [PMID: 39640021 PMCID: PMC11615957 DOI: 10.1039/d4sc06891b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Catalytic electrochemical asymmetric catalysis is emerging as a promising strategy for the synthesis of chiral compounds. Herein, we report an asymmetric electrochemical nickel-catalysed reductive conjugate addition of alkenyl bromides/aryl iodides to α,β-unsaturated ketones in an undivided cell, leading to addition products with high yields and excellent enantioselectivities (up to 96% yield and 96% ee).
Collapse
Affiliation(s)
- Siriphong Somprasong
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3 9747 AG Groningen The Netherlands
| | - Bin Wan
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3 9747 AG Groningen The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3 9747 AG Groningen The Netherlands
| |
Collapse
|
3
|
Xu Z, Zheng C, Lin J, Huang W, Song D, Zhong W, Ling F. Asymmetric Counteranion-Directed Electrocatalysis for Enantioselective Control of Radical Cation. Angew Chem Int Ed Engl 2025; 64:e202413601. [PMID: 39210675 DOI: 10.1002/anie.202413601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The control of enantioselectivity in radical cation reactions presents long-standing challenges, despite a few successful examples. We introduce a novel strategy of asymmetric counteranion-directed electrocatalysis to address enantioselectivity in radical cation chemistry. This concept has been successfully demonstrated in two reactions: an asymmetric dehydrogenative indole-phenol [3+2] coupling and an atroposelective C-H/N-H dehydrogenative coupling. These reactions have enabled the synthesis of benzofuroindolines and C-N axially chiral indoles with high yields and excellent enantiomeric excesses. Detailed mechanistic studies confirmed a radical-radical coupling mechanism. Moreover, density functional theory (DFT) calculations supported the indole radical cation as the pivotal intermediate, rather than a neutral indolyl radical, shedding new light on the underlying processes driving these reactions.
Collapse
Affiliation(s)
- Zhenhui Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Changdi Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Jie Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Weiwei Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Dingguo Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Weihui Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| |
Collapse
|
4
|
Hu L, Le Blanc Lele Fosso J, Guillot R, Mellah M, Schulz E. Electrochemical Enantioselective Nickel-Catalyzed Cross-Coupling of Aldehydes with Aryl Iodides. Chemistry 2024; 30:e202403432. [PMID: 39365835 DOI: 10.1002/chem.202403432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
The preparation of enantioenriched diarylmethanol derivatives is described using nickel-catalyzed electrochemical cross-couplings between various alkyl/aryl aldehydes and aryl iodides. Performed in an electrochemical cell equipped with an iron anode and a nickel cathode, this electrocatalytic variant led to the scalemic targeted products in the presence of 2,2-bis((4 R,5S)-4,5-diphenyl-4,5-dihydrooxazol-2-yl)acetonitrile (L2), as enantiopure cyano-bis(oxazoline) ligand. X-ray structure analysis of a pre-catalyst, for instance the [Ni(II)(L2)2] complex, with L2 as an anionic bisoxazolinate ligand, confirms the chemical formulation of one nickel surrounded by two ligands. The redox behavior of the new Ni complexes generated in situ was first assessed by cyclic voltammetry showing a redox wave at ca. -1.5 V that can be assigned to the two-electron reduction of the Ni(II) center to the Ni(0) state. Oxidative addition between the electrogenerated Ni(0) complex and aryl iodide was evidenced. An intense current was observed in presence of a mixture of the two substrates pertaining an electrocatalytic process. Interestingly, we found that the sacrificial iron anode plays a crucial role in the catalytic mechanism.
Collapse
Affiliation(s)
- Liangjian Hu
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Jospin Le Blanc Lele Fosso
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Régis Guillot
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Mohamed Mellah
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Emmanuelle Schulz
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| |
Collapse
|
5
|
Wang JB, Shen Y, Yan QL, Kong WJ, Nian Y, Shang M. Modular Access to C2'-Aryl/Alkenyl Nucleosides with Electrochemical Stereoselective Cross-Coupling. Angew Chem Int Ed Engl 2024:e202418806. [PMID: 39620453 DOI: 10.1002/anie.202418806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Chemically modified oligonucleotides have garnered significant attention in medicinal chemistry, chemical biology, and synthetic biology due to their enhanced stability in vivo compared to naturally occurring oligonucleotides. However, current methods for synthesizing modified nucleosides, particularly at the C2'-position, are limited in terms of efficiency, modularity, and selectivity. Herein, we report a new approach for the synthesis of highly functionalized C2'-α-aryl/alkenyl nucleosides via an electrochemical nickel-catalyzed cross-coupling of 2'-bromo nucleosides with a variety of (hetero)aryl and alkenyl iodides. This method affords a diverse array of C2'- α-aryl/alkenyl nucleosides with excellent stereoselectivity, broad substrate scope, and good functional group compatibility. We further synthesized oligonucleotides incorporating C2'-aryl-modified thymidine moieties and demonstrated that their annealed double-stranded DNAs exhibit decreased melting temperatures (Tm). Additionally, oligonucleotides with C2'-aryl modifications at the 3' end showed enhanced resistance to 3'-exonuclease degradation and C2'-aryl modifications did not impede the cellular uptake process, highlighting the potential of these modified oligonucleotides for therapeutic applications.
Collapse
Affiliation(s)
- Jia-Bao Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yu Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qing-Long Yan
- Jiaxing Key Laboratory of Biosemiconductors, Xiangfu Laboratory, Jiashan, 314102, Zhejiang, People's Republic of China
| | - Wei-Jun Kong
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, People's Republic of China
| | - Yong Nian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ming Shang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
6
|
Ye Z, Ma W, Zhang X, Liu H, Zhang F. Electrochemically Driven Nickel-Catalyzed Enantioselective Hydro-Arylation/Alkenylation of Enones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405926. [PMID: 39264302 PMCID: PMC11558104 DOI: 10.1002/advs.202405926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Herein, the study reports the first electrochemical nickel-catalyzed enantioselective hydro-arylation/alkenylation of enones in an undivided cell with low-cost electrodes in the absence of external reductants and supporting electrolytes. Aryl bromides/iodides/triflates or alkenyl bromides are employed as electrophiles for the efficient preparation of more than 56 valuable β-arylated/alkenylated ketones in a simple manner (up to 97% yield, 97% ee). With the advantages of electrochemistry, excellent functional group tolerance and late-stage modification of complex natural products and pharmaceuticals made the established protocol greener and more economic. Mechanism investigation suggests that a NiI/NiIII cycle may be involved in this electro-reductive reaction rather than metal reductant driven Ni0/NiII cycle. Overall, the efficient electrochemical activation and turnover of the nickel catalyst avoid the drawbacks posed by the employment of stoichiometric amount of sensitive metal powder reductants.
Collapse
Affiliation(s)
- Zenghui Ye
- School of PharmacyHangzhou Medical CollegeHangzhouZhejiang311399China
| | - Weiyuan Ma
- School of PharmacyHangzhou Medical CollegeHangzhouZhejiang311399China
| | - Xi Zhang
- School of PharmacyHangzhou Medical CollegeHangzhouZhejiang311399China
| | - Huaqing Liu
- School of PharmacyHangzhou Medical CollegeHangzhouZhejiang311399China
| | - Fengzhi Zhang
- School of PharmacyHangzhou Medical CollegeHangzhouZhejiang311399China
| |
Collapse
|
7
|
Chen LM, Shin C, DeLano TJ, Carretero-Cerdán A, Gheibi G, Reisman SE. Ni-Catalyzed Asymmetric Reductive Arylation of α-Substituted Imides. J Am Chem Soc 2024; 146:29523-29530. [PMID: 39413404 PMCID: PMC11528402 DOI: 10.1021/jacs.4c09327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
α-Aryl imides are common structural motifs in bioactive molecules and proteolysis-targeting chimeras designed for targeted protein degradation. An asymmetric Ni-catalyzed reductive cross-coupling of imide electrophiles and (hetero)aryl halides has been developed to synthesize enantioenriched α-arylglutarimides from simple starting materials. Judicious selection of electrophile pairs allows for coupling of both electron-rich and electron-deficient (hetero)aryl halides in good yields and enantioselectivities.
Collapse
Affiliation(s)
- Li-Ming Chen
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Chungkeun Shin
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Travis J. DeLano
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alba Carretero-Cerdán
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division
of Theoretical Chemistry & Biology, CBH School, KTH Royal Institute of Technology, Teknikringen 30, Stockholm S-10044, Sweden
| | - Golsa Gheibi
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Zhang J, Wu J. Recent progress in asymmetric radical reactions enabled by chiral iron catalysts. Chem Commun (Camb) 2024; 60:12633-12649. [PMID: 39380541 DOI: 10.1039/d4cc03047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Transition-metal-catalyzed radical asymmetric reactions offer a versatile and effective platform for accessing chiral organic molecules with high enantiopurity. Given that iron is the most abundant and less toxic transition metalic element available, the application of iron catalysts is considered to be a more sustainable and attractive approach. Over the last decade, several exciting and notable achievements have been witnessed. In this highlight, we aim to provide an overview of the progress in ligand-enabled iron-catalyzed asymmetric radical reactions, with an emphasis on the reaction mechanisms.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
9
|
Meyer S, Neuhut A, Claraz A. Electrochemical sulfonylation/Truce-Smiles rearrangement of N-allylbenzamides: toward sulfone-containing β-arylethylamines and Saclofen analogues. Org Biomol Chem 2024; 22:8102-8108. [PMID: 39290053 DOI: 10.1039/d4ob01327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The β-arylethylamine pharmacophore is commonly found in medications for central nervous system disorders, prompting the need for safe and efficient methods to endow this motif with relevant functional groups for drug discovery. In this context, herein, we have established electrochemical radical sulfonylation reactions of N-allylbenzamides followed by Truce-Smiles rearrangement to produce sulfone- and sulfonate ester-containing β-arylethylamines. Electricity enables this transformation to occur under mild and oxidant-free conditions. Simple sources of sulfonyl radicals and SO2 surrogates were employed to form sulfones and sulfonate esters, respectively. This practical and operationally robust method exhibited a broad substrate scope with good to high yields. The prospective pharmaceutical utility of the process was further demonstrated by removing the N-protecting groups and hydrolysing the sulfonate ester moiety to provide γ-sulfonyl-β-arylamines and Saclofen.
Collapse
Affiliation(s)
- Sébastien Meyer
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Alexandre Neuhut
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
10
|
Ni Q, Liu X, Song Z, Ma Y. Nickel-Catalyzed Cross-Coupling of Aziridines with Thioesters toward Atom-Economic Synthesis of β-Sulfanyl Amides. Org Lett 2024; 26:8457-8462. [PMID: 39331476 DOI: 10.1021/acs.orglett.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Thioesters have been recognized as a class of powerful bifunctional reagents, namely, great donors of acyl and sulfide moieties. However, such application in value-added synthesis is still very limited to date. Herein, a nickel-catalyzed cross-coupling reaction system of aziridines with thioesters was developed under redox-neutral and mild conditions. This catalytic method provides an atom-economic route for the synthesis of diverse β-sulfanyl amide derivatives with wide substrate scope (43 examples), good functional group tolerance, and regioselectivity.
Collapse
Affiliation(s)
- Qian Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Xianmao Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Zhiyong Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| |
Collapse
|
11
|
Wang J, Yang C, Gao H, Zuo L, Guo Z, Yang P, Li S, Tang Z. Customized Photoelectrochemical C-N and C-P Bond Formation Enabled by Tailored Deposition on Photoanodes. Angew Chem Int Ed Engl 2024; 63:e202408901. [PMID: 39017961 DOI: 10.1002/anie.202408901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/14/2024] [Indexed: 07/18/2024]
Abstract
Photoelectrochemistry (PEC) is burgeoning as an innovative solution to organic synthesis. However, the current PEC systems suffer from limited reaction types and unsatisfactory performances. Herein, we employ efficient BiVO4 photoanodes with tailored deposition layers for customizing two PEC approaches toward C-N and C-P bond formation. Our process proceeds under mild reaction conditions, deploying easily available substrates and ultra-low potentials. Beyond photocatalysis and electrocatalysis, customized PEC offers high efficiency, good functional group tolerance, and substantial applicability for decorating drug molecules, highlighting its promising potential to enrich the synthetic toolbox for broader organic chemistry of practical applications.
Collapse
Affiliation(s)
- Jinghao Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huiwen Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lulu Zuo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyu Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengqi Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Siyang Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Zhang JR, Ding HJ, Shang ZL, Zhang B, Xu M, Cao P, Hu P, Wang BQ, Chen B. Nickel-Catalyzed Reductive Dicarbofunctionalization of 1,3-Dienes with Aziridines and (Het)Aryl Electrophiles. Org Lett 2024; 26:8301-8306. [PMID: 39325534 DOI: 10.1021/acs.orglett.4c02983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
A three-component reductive 1,4-dicarbofunctionalization of 1,3-dienes with aziridines and (het)aryl electrophiles was realized. The combination of Ni catalysis with Mn powder as a final reductant enables the direct formation of a Csp2-Csp3 and a Csp3-Csp3 bond at one time. This protocol afforded a convenient approach to the synthesis of β-arylethylamines bearing various functionals and heterocyclic groups. The utility of this reaction was also demonstrated by scale-up preparation, late-stage modification of bioactive molecules, and diverse transformations.
Collapse
Affiliation(s)
- Jie-Rui Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Hua-Jiao Ding
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Zhang-Li Shang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bin Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Minghui Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
13
|
Lan H, Liu Y, Ackermann L, Wang L, Wang D. Ruthenium(II)-Catalyzed Remote C-H Alkylation of Arenes Using Diverse N-Directing Groups through Aziridine Ring Opening. Org Lett 2024; 26:7993-7998. [PMID: 39264308 DOI: 10.1021/acs.orglett.4c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
An efficient approach for the remote C-H alkylation of arenes, employing a variety of N-directing groups is described. This method facilitates the straightforward synthesis of valuable phenylethylamine derivatives by exclusively cleaving the benzylic C-N bond in aziridines. Furthermore, these products can easily remove the protecting groups, resulting in a variety of meta-substituted compounds, such as amines and ketones, which hold significance in synthetic chemistry.
Collapse
Affiliation(s)
- Hongyan Lan
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yingzhen Liu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen 37077, Germany
| | - Lanfen Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Dingyi Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
14
|
Lan Y, Han Q, Liao P, Chen R, Fan F, Zhao X, Liu W. Nickel-Catalyzed Enantioselective C(sp 3)-C(sp 3) Cross-Electrophile Coupling of N-Sulfonyl Styrenyl Aziridines with Alkyl Bromides. J Am Chem Soc 2024; 146:25426-25432. [PMID: 39231321 DOI: 10.1021/jacs.4c08435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Herein, we report the first example of a highly enantioselective alkylative aziridine ring opening. Under the catalysis of a chiral nickel/pyridine-imidazoline complex, asymmetric C(sp3)-C(sp3) cross-electrophile coupling between racemic N-sulfonyl styrenyl aziridines and readily available primary alkyl bromides furnishes a variety of highly enantioenriched phenethylamine derivatives with complete regiocontrol and good functional group tolerance. Preliminary mechanistic studies support a reaction pathway consisting of regioselective iodolysis of aziridines in situ and subsequent enantioconvergent coupling of the generated β-amino benzyl iodides with alkyl bromides.
Collapse
Affiliation(s)
- Yun Lan
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Qiaoying Han
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Pingyong Liao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Ruijia Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Fei Fan
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Xuejun Zhao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| |
Collapse
|
15
|
Lan L, Xu K, Zeng C. The merger of electro-reduction and hydrogen bonding activation for a radical Smiles rearrangement. Chem Sci 2024; 15:13459-13465. [PMID: 39183920 PMCID: PMC11339951 DOI: 10.1039/d4sc02821j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
The reductive activation of chemical bonds at less negative potentials provides a foundation for high functional group tolerance and selectivity, and it is one of the central topics in organic electrosynthesis. Along this line, we report the design of a dual-activation mode by merging electro-reduction with hydrogen bonding activation. As a proof of principle, the reduction potential of N-phenylpropiolamide was shifted positively by 218 mV. Enabled by this strategy, the radical Smiles rearrangement of N-arylpropiolamides without external radical precursors and prefunctionalization steps was accomplished. [DBU][HOAc], a readily accessible ionic liquid, was exploited for the first time both as a hydrogen bonding donor and as a supporting electrolyte.
Collapse
Affiliation(s)
- Liyuan Lan
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| | - Chengchu Zeng
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
16
|
Wang J, Li S, Yang C, Gao H, Zuo L, Guo Z, Yang P, Jiang Y, Li J, Wu LZ, Tang Z. Photoelectrochemical Ni-catalyzed cross-coupling of aryl bromides with amine at ultra-low potential. Nat Commun 2024; 15:6907. [PMID: 39134536 PMCID: PMC11319468 DOI: 10.1038/s41467-024-51333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Photoelectrochemical (PEC) cell is an ideal platform for organic transformation because of its green benefits and minimal energy consumption. As an emerging methodology, the reaction types of photoelectrocatalytic organic synthesis (PECOS) are limited to simple oxidation and C-H activation at current stage. Metal catalysis for the construction of C(sp2)-N bonds has not been touched yet in PECOS. We introduce here a PEC method that successfully engages Ni catalysis for the mild production of aniline derivatives. Experimental and computational investigations elucidate that the addition of photoanode-generated amine radical to Ni catalyst avoids the sluggish nucleophilic attack, enabling the reaction to proceed at an ultra-low potential (-0.4 V vs. Ag/AgNO3) and preventing the overoxidation of products in conventional electrochemical synthesis. This synergistic catalysis strategy exhibits good functional group tolerance and wide substrate scope on both aryl halides and amines, by which some important natural products and pharmaceutical chemicals have been successfully modified.
Collapse
Affiliation(s)
- Jinghao Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Siyang Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Huiwen Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Lulu Zuo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhiyu Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Pengqi Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Jian Li
- University of Chinese Academy of Sciences, Beijing, PR China.
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Beijing, PR China.
| | - Li-Zhu Wu
- University of Chinese Academy of Sciences, Beijing, PR China.
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Beijing, PR China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
17
|
Zhang X, Ye Z, Li Y, Zhao Z, Ma W, Zhang F. Electrochemical Nickel-Catalyzed Cross-Electrophile Coupling of Alkenyl Triflates with α-Chloroamides. Org Lett 2024; 26:6364-6369. [PMID: 39051850 DOI: 10.1021/acs.orglett.4c02072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cross-electrophile coupling reactions of different electrophiles have been extensively studied but mainly limited to bromides and iodides. Here, we report an electrochemically induced nickel-catalyzed cross-electrophile coupling strategy between alkenyl triflates and α-chloroamides in an undivided cell under mild reaction conditions, affording the α-functionalized amide derivatives in good to excellent yields with broad substrate scopes and good functional group tolerance. The control experiments were conducted, and a plausible mechanism was proposed.
Collapse
Affiliation(s)
- Xi Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Zenghui Ye
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Yicai Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Ziqiang Zhao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Weiyuan Ma
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Fengzhi Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
18
|
Samanta S, Biswas P, O'Bannon BC, Powers DC. β-Phenethylamine Synthesis: N-Pyridinium Aziridines as Latent Dual Electrophiles. Angew Chem Int Ed Engl 2024; 63:e202406335. [PMID: 38699820 PMCID: PMC11262962 DOI: 10.1002/anie.202406335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
β-Phenethylamines are widely represented in biologically and pharmacologically active organic small molecules. Here, we introduce N-pyridinium aziridines as latent dual electrophiles for the synthesis of β-phenethylamines. Bromide-promoted ring opening generates β-halopyridinium amines. Selective Ni-catalyzed C-C cross-coupling between organozinc nucleophiles and the benzylic C-Br electrophile affords a diverse family of β-functionalized phenethylaminopyridinium salts, and coupling is stereoconvergent in the presence of chiral ligands. Subsequent Ni-catalyzed reductive N-N bond activation within the β-functionalized phenethylaminopyridinium salts furnishes the products of formal olefin carboamination. Other reductive N-N cleavage reactions are demonstrated to provide access to free primary amines, alkylated amines, heterocycles, and products derived from N-centered radical chemistry. The developed reaction sequence can be implemented in the context of complex molecules and natural product derivatives. Together, the described results provide a general and modular synthesis of β-phenethylamines and significantly expand the utility of N-pyridinium aziridines as linchpins in chemical synthesis.
Collapse
Affiliation(s)
- Samya Samanta
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Promita Biswas
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Braeden C O'Bannon
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| |
Collapse
|
19
|
Wang BL, Zhao H, Wang XW, Xu S. Merging Ring-Opening 1,2-Metallate Shift with Asymmetric C( sp3)-H Borylation of Aziridines. J Am Chem Soc 2024; 146:18879-18885. [PMID: 38968417 DOI: 10.1021/jacs.4c06569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Chiral secondary alkyl amines with a vicinal quaternary stereocenter are undoubtedly important and ubiquitous subunits in natural products and pharmaceuticals. However, their asymmetric synthesis remains a formidable challenge. Herein, we merge the ring-opening 1,2-metallate shift with iridium-catalyzed enantioselective C(sp3)-H borylation of aziridines to deliver these frameworks with high enantioselectivities. We also demonstrated the synthetic application by downstream transformations, including the total synthesis of two Amaryllidaceae alkaloids, (-)-crinane and (+)-mesmebrane.
Collapse
Affiliation(s)
- Bai-Lin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Sciences, Soochow University, Suzhou 215123, China
| | - Hongliang Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Sciences, Soochow University, Suzhou 215123, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
20
|
Schoepfer A, Laplaza R, Wodrich MD, Waser J, Corminboeuf C. Reaction-Agnostic Featurization of Bidentate Ligands for Bayesian Ridge Regression of Enantioselectivity. ACS Catal 2024; 14:9302-9312. [PMID: 38933467 PMCID: PMC11197013 DOI: 10.1021/acscatal.4c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Chiral ligands are important components in asymmetric homogeneous catalysis, but their synthesis and screening can be both time-consuming and resource-intensive. Data-driven approaches, in contrast to screening procedures based on intuition, have the potential to reduce the time and resources needed for reaction optimization by more rapidly identifying an ideal catalyst. These approaches, however, are often nontransferable and cannot be applied across different reactions. To overcome this drawback, we introduce a general featurization strategy for bidentate ligands that is coupled with an automated feature selection pipeline and Bayesian ridge regression to perform multivariate linear regression modeling. This approach, which is applicable to any reaction, incorporates electronic, steric, and topological features (rigidity/flexibility, branching, geometry, and constitution) and is well-suited for early stage ligand optimization. Using only small data sets, our workflow capably predicts the enantioselectivity of four metal-catalyzed asymmetric reactions. Uncertainty estimates provided by Bayesian ridge regression permit the use of Bayesian optimization to efficiently explore pools of prospective ligands. Finally, we constructed the BDL-Cu-2023 data set, composed of 312 bidentate ligands extracted from the Cambridge Structural Database, and screened it with this procedure to identify ligand candidates for a challenging asymmetric oxy-alkynylation reaction.
Collapse
Affiliation(s)
- Alexandre
A. Schoepfer
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Laboratory
of Catalysis and Organic Synthesis, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National
Center for Competence in Research-Catalysis (NCCR-Catalysis), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Ruben Laplaza
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National
Center for Competence in Research-Catalysis (NCCR-Catalysis), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Matthew D. Wodrich
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National
Center for Competence in Research-Catalysis (NCCR-Catalysis), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory
of Catalysis and Organic Synthesis, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National
Center for Competence in Research-Catalysis (NCCR-Catalysis), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National
Center for Competence in Research-Catalysis (NCCR-Catalysis), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Zhang Q, Zhang J, Zhu W, Lu R, Guo C. Enantioselective nickel-catalyzed anodic oxidative dienylation and allylation reactions. Nat Commun 2024; 15:4477. [PMID: 38796470 PMCID: PMC11127924 DOI: 10.1038/s41467-024-48936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Precision control of stereochemistry in radical reactions remains a formidable challenge due to the prevalence of incidental racemic background reactions resulting from undirected substrate oxidation in the absence of chiral induction. In this study, we devised an thoughtful approach-electricity-driven asymmetric Lewis acid catalysis-to circumvent this impediment. This methodology facilitates both asymmetric dienylation and allylation reactions, resulting in the formation of all-carbon quaternary stereocenters and demonstrating significant potential in the modular synthesis of functional and chiral benzoxazole-oxazoline (Boox) ligands. Notably, the involvement of chiral Lewis acids in both the electrochemical activation and stereoselectivity-defining radical stages offers innovative departures for designing single electron transfer-based reactions, significantly underscoring the relevance of this approach as a multifaceted and universally applicable strategy for various fields of study, including electrosynthesis, organic chemistry, and drug discovery.
Collapse
Affiliation(s)
- Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wangjie Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ruimin Lu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
22
|
Cai YM, Liu XT, Xu LL, Shang M. Electrochemical Ni-Catalyzed Decarboxylative C(sp 3 )-N Cross-Electrophile Coupling. Angew Chem Int Ed Engl 2024; 63:e202315222. [PMID: 38299697 DOI: 10.1002/anie.202315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
A new electrochemical transformation is presented that enables chemists to couple simple alkyl carboxylic acid derivatives with an electrophilic amine reagent to construct C(sp3 )-N bond. The success of this reaction hinges on the merging of cooperative electrochemical reduction with nickel catalysis. The chemistry exhibits a high degree of practicality, showcasing its wide applicability with 1°, 2°, 3° carboxylic acids and remarkable compatibility with diverse functional groups, even in the realm of late-stage functionalization. Furthermore, extensive mechanistic studies have unveiled the engagement of alkyl radicals and iminyl radicals; and elucidated the multifaceted roles played by i Pr2 O, Ni catalyst, and electricity.
Collapse
Affiliation(s)
- Yue-Ming Cai
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Ting Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lin-Lin Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ming Shang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
23
|
Zhang J, Zhu W, Chen Z, Zhang Q, Guo C. Dual-Catalyzed Stereodivergent Electrooxidative Homocoupling of Benzoxazolyl Acetate. J Am Chem Soc 2024; 146:1522-1531. [PMID: 38166394 DOI: 10.1021/jacs.3c11429] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The development of a reliable strategy for stereodivergent radical reactions that allows convenient access to all stereoisomers of homocoupling adducts with multiple stereogenic centers remains an unmet goal in organic synthesis. Herein, we describe a dual-catalyzed electrooxidative C(sp3)-H/C(sp3)-H homocoupling with complete absolute and relative stereocontrol for the synthesis of molecules with contiguous quaternary stereocenters in a general and predictable manner. The stereodivergent electrooxidative homocoupling reaction is achieved by synergistically utilizing two distinct chiral catalysts that convert identical racemic substrates into inherently distinctive reactive chiral intermediates, dictate enantioselective radical addition, and allow access to the full complement of stereoisomeric products via simple catalyst permutation. The successful execution of the dual-electrocatalytic strategy programmed via electrooxidative activation provides a significant conceptual advantage and will serve as a useful foundation for further research into cooperative stereocontrolled radical transformations and diversity-oriented synthesis.
Collapse
Affiliation(s)
- Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wangjie Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Wang YZ, Sun B, Zhu XY, Gu YC, Ma C, Mei TS. Enantioselective Reductive Cross-Couplings of Olefins by Merging Electrochemistry with Nickel Catalysis. J Am Chem Soc 2023; 145:23910-23917. [PMID: 37883710 DOI: 10.1021/jacs.3c10109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The merger of electrochemistry and transition metal catalysis has emerged as a powerful tool to join two electrophiles in an enantioselective manner. However, the development of enantioselective electroreductive cross-couplings of olefins remains a challenge. Inspired by the advantages of the synergistic use of electrochemistry with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of acrylates with aryl halides and alkyl bromides, which affords chiral α-aryl carbonyls in good to excellent enantioselectivity. Additionally, this catalytic reaction can be applied to (hetero)aryl chlorides, which is difficult to achieve by other methods. The combination of cyclic voltammetry analysis with electrode potential studies suggests that the NiI species activates aryl halides by oxidative addition and alkyl bromides by single-electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bing Sun
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-Yu Zhu
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, United Kingdom
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
25
|
Liu Y, Li P, Wang Y, Qiu Y. Electroreductive Cross-Electrophile Coupling (eXEC) Reactions. Angew Chem Int Ed Engl 2023; 62:e202306679. [PMID: 37327185 DOI: 10.1002/anie.202306679] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Electrochemistry utilizes electrons as a potent, controllable, and traceless alternative to chemical oxidants or reductants, and typically offers a more sustainable option for achieving selective organic synthesis. Recently, the merger of electrochemistry with readily available electrophiles has been recognized as a viable and increasingly popular methodology for efficiently constructing challenging C-C and C-heteroatom bonds in a sustainable manner for complex organic molecules. In this mini-review, we have systematically summarized the most recent advances in electroreductive cross-electrophile coupling (eXEC) reactions during the last decade. Our focus has been on readily available electrophiles, including aryl and alkyl organic (pseudo)halides, as well as small molecules such as CO2 , SO2 , and D2 O.
Collapse
Affiliation(s)
- Yaowen Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
26
|
Li P, Kou G, Feng T, Wang M, Qiu Y. Electrochemical NiH-Catalyzed C(sp 3 )-C(sp 3 ) Coupling of Alkyl Halides and Alkyl Alkenes. Angew Chem Int Ed Engl 2023; 62:e202311941. [PMID: 37708153 DOI: 10.1002/anie.202311941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Herein, an electrochemically driven NiH-catalyzed reductive coupling of alkyl halides and alkyl alkenes for the construction of Csp3 -Csp3 bonds is firstly reported. Notably, alkyl halides serve dual function as coupling substrates and as hydrogen sources to generate NiH species under electrochemical conditions. The tunable nature of this reaction is realized by introducing an intramolecular coordinating group to the substrate, where the product can be easily adjusted to give the desired branched products. The method proceeds under mild conditions, exhibits a broad substrate scope, and affords moderate to excellent yields with over 70 examples, including late-stage modification of natural products and drug derivatives. Mechanistic insights offer evidence for an electrochemically driven coupling process. The sp3 -carbon-halogen bonds can be activated through single electron transfer (SET) by the nickel catalyst in its low valence state, generated by cathodic reduction, and the generation of NiH species from alkyl halides is pivotal to this transformation.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangsheng Kou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
27
|
Pozhydaiev V, Muller C, Moran J, Lebœuf D. Catalytic Synthesis of β-(Hetero)arylethylamines: Modern Strategies and Advances. Angew Chem Int Ed Engl 2023; 62:e202309289. [PMID: 37599269 DOI: 10.1002/anie.202309289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/22/2023]
Abstract
β-(Hetero)arylethylamines appear in a myriad of pharmaceuticals due to their broad spectrum of biological properties, making them prime candidates for drug discovery. Conventional methods for their preparation often require engineered substrates that limit the flexibility of the synthetic routes and the diversity of compounds that can be accessed. Consequently, methods that provide rapid and versatile access to those scaffolds remain limited. To overcome these challenges, synthetic chemists have designed innovative and modular strategies to access the β-(hetero)arylethylamine motif, paving the way for their more extensive use in future pharmaceuticals. This review outlines recent progresses in the synthesis of (hetero)arylethylamines and emphasizes how these innovations have enabled new levels of molecular complexity, selectivity, and practicality.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Cyprien Muller
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
28
|
Liu S, Wang SL, Wan J, Peng S, Zhang JR, Ding HJ, Zhang B, Ni HL, Cao P, Hu P, Wang BQ, Chen B. Nickel-Catalyzed Reductive Cross-Coupling of Aziridines and Allylic Chlorides. Org Lett 2023; 25:6582-6586. [PMID: 37642345 DOI: 10.1021/acs.orglett.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A nickel-catalyzed reductive cross-coupling of aziridines and allylic chlorides was realized by using manganese metal as the reducing agent. This protocol afforded a convenient approach to obtain β-allyl-substituted arylethylamines bearing various functional groups. The utility of this reaction was also demonstrated by scale-up preparation and diverse transformations, including the synthesis of Baclofen and several bioactive molecular motifs.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Sen-Lin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Jie Wan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Shuang Peng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Jie-Rui Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Hua-Jiao Ding
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bin Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|