1
|
Wang W, Hu Y, Yang J, Zhang S, Zhang Y, Jin Q, Xu M, Wang Q, Shao Y, Zhang F. LuCl 3/B(C 6F 5) 3 Cocatalyzed Reductive Deoxygenation of Ketones, Aldehydes, Alcohols, and Ethers to Alkanes with Pinacolborane. Org Lett 2024; 26:8468-8474. [PMID: 39347629 DOI: 10.1021/acs.orglett.4c02863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This report describes the LuCl3/B(C6F5)3 cocatalyzed reductive deoxygenation of 67 ketones, aldehydes, alcohols, and ethers to alkanes under mild conditions. The strategy tolerates reactive amino, hydroxyl, nitro, halogen, vinyl, and ester functional groups, and the results demonstrate rare chemoselective deoxygenation of α,β-unsaturated ketones. Isotopic labeling experiments, control experiments, and derivatization studies are used to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Wenli Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yuanling Hu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jianing Yang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shuyuan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuqing Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qian Jin
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Moke Xu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qi Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
2
|
Xun SS, Wang GW, Lu SM, Zhou YG. Cooperative Diarylborinic Acid/Chloride-Catalyzed Formal S Ni Reaction of cis-4-Hydroxymethyl-1,2-Cyclopentene Oxides. Org Lett 2024; 26:8350-8355. [PMID: 39325546 DOI: 10.1021/acs.orglett.4c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A catalytic formal SNi reaction was designed to achieve stereoretentive products for cis-4-hydroxymethyl-1,2-cyclopentene oxides by using diarylborinic acid as a dual role catalyst and chloride as a catalytic transient nucleophile through a double-displacement mechanism. This reaction offers the advantages of a low catalyst loading of 0.1 mol % and wide substrate scope, even including N-substituents. The use of chiral boron acid as a catalyst for this reaction was also attempted.
Collapse
Affiliation(s)
- Shan-Shan Xun
- School of Chemistry and Material Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Gao-Wei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Sheng-Mei Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
3
|
Blackner JJ, Schneider OM, Wong WO, Hall DG. Removing Neighboring Ring Influence in Monocyclic B-OH Diazaborines: Properties and Reactivity as Phenolic Bioisosteres with Dynamic Hydroxy Exchange. J Am Chem Soc 2024; 146:19499-19508. [PMID: 38959009 DOI: 10.1021/jacs.4c06360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The design of small molecules with unique geometric profiles or molecular connectivity represents an intriguing yet neglected challenge in modern organic synthesis. This challenge is compounded when emphasis is placed on the preparation of new chemotypes that have distinct and practical functions. To expand the structural diversity of boron-containing heterocycles, we report herein the preparation of novel monocyclic hemiboronic acids, diazaborines. These compounds have enabled the study of a pseudoaromatic boranol-containing (B-OH) ring free of influence from an appended aromatic system. Synthetic and spectroscopic studies have provided insight into the aromatic character, Lewis acidic nature, chemical reactivity, and unique ability of the exocyclic B-OH unit to participate in hydroxy exchange, suggesting their use in organocatalysis and as reversible covalent inhibitors. Moreover, density functional theory and nucleus-independent chemical shift calculations reveal that the aromatic character of the boroheterocyclic ring is increased significantly in comparison to known bicyclic benzodiazaborines (naphthoid congeners), consequently leading to attenuated Lewis acidity. Direct structural comparison to a well-established biaryl isostere, 2-phenylphenol, through X-ray crystallographic analysis reveals that N-aryl derivatives are strikingly similar in size and conformation, with attenuated logP values underscoring the value of the polar BNN unit. Their potential application as low-molecular-weight scaffolds in drug discovery is demonstrated through orthogonal diversification and preliminary antifungal evaluation (Candida albicans), which unveiled analogs with low micromolar inhibitory concentration.
Collapse
Affiliation(s)
- Jake J Blackner
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Olivia M Schneider
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Warren O Wong
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Dennis G Hall
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
4
|
Halford-McGuff JM, Varga M, Cordes DB, McKay AP, Watson AJB. Modular Synthesis of Complex Benzoxaboraheterocycles through Chelation-Assisted Rh-Catalyzed [2 + 2 + 2] Cycloaddition. ACS Catal 2024; 14:1846-1854. [PMID: 38327642 PMCID: PMC10845118 DOI: 10.1021/acscatal.3c05766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Benzoxaboraheterocycles (BOBs) are moieties of increasing interest in the pharmaceutical industry; however, the synthesis of these compounds is often difficult or impractical due to the sensitivity of the boron moiety, the requirement for metalation-borylation protocols, and lengthy syntheses. We report a straightforward, modular approach that enables access to complex examples of the BOB framework through a Rh-catalyzed [2 + 2 + 2] cycloaddition using MIDA-protected alkyne boronic acids. The key to the development of this methodology was overcoming the steric barrier to catalysis by leveraging chelation assistance. We show the utility of the method through synthesis of a broad range of BOB scaffolds, mechanistic information on the chelation effect, intramolecular alcohol-assisted BMIDA hydrolysis, and linear/cyclic BOB limits as well as comparative binding affinities of the product BOB frameworks for ribose-derived biomolecules.
Collapse
Affiliation(s)
- John M. Halford-McGuff
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Marek Varga
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - David B. Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Aidan P. McKay
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Allan J. B. Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
5
|
Xun SS, Wang H, Yu CB, Lu SM, Zhou YG. Diarylborinic Acid-Catalyzed Ring Opening of cis-4-Hydroxymethyl-1,2-Cyclopentene Oxides: Synthesis of 1,2,4-Trisubstituted Cyclopentanes. Org Lett 2023; 25:7540-7544. [PMID: 37812068 DOI: 10.1021/acs.orglett.3c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A diarylborinic acid-catalyzed ring opening of cis-4-hydroxymethyl-1,2-cyclopentene oxides was developed with N-nucleophiles including anilines, benzotriazole, and alkylamines, as well as S-nucleophiles, affording 1,2,4-trisubstituted cyclopentane compounds containing a quaternary carbon center. The mechanism study indicated that the "half-cage" structure formed by the epoxide substrate and the catalyst prevents the nucleophiles from attacking the inner side of the "half-cage", resulting in the desired ring-opening product.
Collapse
Affiliation(s)
- Shan-Shan Xun
- School of Chemistry and Material Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Han Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Chang-Bin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Sheng-Mei Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| |
Collapse
|