1
|
Sabo M, Wascher E, Schneider D. The neural basis of attentional selection in goal-directed memory retrieval. Sci Rep 2024; 14:20937. [PMID: 39251722 PMCID: PMC11385572 DOI: 10.1038/s41598-024-71691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Goal-directed memory reactivation involves retrieving the most relevant information for the current behavioral goal. Previous research has linked this process to activations in the fronto-parietal network, but the underlying neurocognitive mechanism remains poorly understood. The current electroencephalogram (EEG) study explores attentional selection as a possible mechanism supporting goal-directed retrieval. We designed a long-term memory experiment containing three phases. First, participants learned associations between objects and two screen locations. In a following phase, we changed the relevance of some locations (selective cue condition) to simulate goal-directed retrieval. We also introduced a control condition, in which the original associations remained unchanged (neutral cue condition). Behavior performance measured during the final retrieval phase revealed faster and more confident responses in the selective vs. neutral condition. At the EEG level, we found significant differences in decoding accuracy, with above-chance effects in the selective cue condition but not in the neutral cue condition. Additionally, we observed a stronger posterior contralateral negativity and lateralized alpha power in the selective cue condition. Overall, these results suggest that attentional selection enhances task-relevant information accessibility, emphasizing its role in goal-directed memory retrieval.
Collapse
Affiliation(s)
- Melinda Sabo
- Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany.
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany
| | - Daniel Schneider
- Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany
| |
Collapse
|
2
|
Moore IL, Smith DE, Long NM. Mnemonic brain state engagement is diminished in healthy aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607567. [PMID: 39211196 PMCID: PMC11361038 DOI: 10.1101/2024.08.12.607567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Healthy older adults typically show impaired episodic memory - memory for when and where an event oc-curred - but intact semantic memory - knowledge for general information and facts. As older adults also have difficulty inhibiting the retrieval of prior knowledge from memory, their selective decline in episodic memory may be due to a tendency to over engage the retrieval state, a brain state in which attention is focused internally in an attempt to access prior knowledge. The retrieval state trades off with the encoding state, a brain state which supports the formation of new memories. Therefore, episodic memory declines in older adults may be the result of differential engagement in mnemonic brain states. Our hypothesis is that older adults are biased toward a retrieval state. We recorded scalp electroencephalography while young, middle-aged and older adults performed a memory task in which they were explicitly directed to either encode the currently presented object stimulus or retrieve a previously presented, categorically-related object stimulus. We used multivariate pattern analysis of spectral activity to decode engagement in the retrieval vs. encoding state. We find that all three age groups can follow top-down instructions to selectively engage in encoding or retrieval and that we can decode mnemonic states for all age groups. However, we find that mnemonic brain state engagement is diminished for older adults relative to middle-aged adults. Our interpretation is that a combination of executive control deficits and a modest bias to retrieve modulates older adults' mnemonic state engagement. Together, these findings suggest that dif-ferential mnemonic state engagement may underlie age-related memory changes.
Collapse
|
3
|
Smith DE, Long NM. Top-Down Task Goals Induce the Retrieval State. J Neurosci 2024; 44:e0452242024. [PMID: 38926086 PMCID: PMC11293448 DOI: 10.1523/jneurosci.0452-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Engaging the retrieval state (Tulving, 1983) impacts processing and behavior (Long and Kuhl, 2019, 2021; Smith et al., 2022), but the extent to which top-down factors-explicit instructions and goals-versus bottom-up factors-stimulus properties such as repetition and similarity-jointly or independently induce the retrieval state is unclear. Identifying the impact of bottom-up and top-down factors on retrieval state engagement is critical for understanding how control of task-relevant versus task-irrelevant brain states influence cognition. We conducted between-subjects recognition memory tasks on male and female human participants in which we varied test phase goals. We recorded scalp electroencephalography and used an independently validated mnemonic state classifier (Long, 2023) to measure retrieval state engagement as a function of top-down task goals (recognize old vs detect new items) and bottom-up stimulus repetition (hits vs correct rejections (CRs)). We find that whereas the retrieval state is engaged for hits regardless of top-down goals, the retrieval state is only engaged during CRs when the top-down goal is to recognize old items. Furthermore, retrieval state engagement is greater for low compared to high confidence hits when the task goal is to recognize old items. Together, these results suggest that top-down demands to recognize old items induce the retrieval state independent from bottom-up factors, potentially reflecting the recruitment of internal attention to enable access of a stored representation.
Collapse
Affiliation(s)
- Devyn E Smith
- Department of Psychology, University of Virginia, Charlottesville, VA 22904
| | | |
Collapse
|
4
|
Gong L, Wang M, Ye C, Liu Q. The impact of sleep quality on visual working memory varied with the duration of maintenance. Front Psychol 2024; 15:1404989. [PMID: 38979074 PMCID: PMC11229051 DOI: 10.3389/fpsyg.2024.1404989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Objective Sleep quality can affect the performance of visual working memory. However, the effect of sleep quality on the maintenance stage, which is the key to maintain the quality and efficiency of visual working memory representation, remains unclear. This study is the first to explore the effect of sleep quality on the maintenance of visual working memory information. Method 60 healthy college students completed the Pittsburgh Sleep Quality Index (PSQI) and color recall task of visual working memory. A mixed experimental design of sleep quality (high or low) and delay duration (1, 4, or 6 s) was used to assess the effect of sleep quality on the maintenance phase of visual working memory. Results The main effects of sleep quality were significant on visual working memory quantity, precision and offset indexes. Among the quantity index, the interaction between sleep quality and delay duration was also significant. This suggests that prolonging the delay time in the maintenance phase leads to difficulty in maintaining attention to the task for those with lower sleep quality, which results in poorer working memory quantitative representations. Conclusion Increases in the delay duration of the maintenance phase in visual working memory intensify the impact of sleep quality on task performance. Our study provides evidence to reveal the relationship between sleep quality and visual working memory and offers recommendations for improving sleep quality and cognitive functioning in individuals.
Collapse
Affiliation(s)
- Li Gong
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- School of Education, Anyang Normal University, Anyang, China
| | - Mengwei Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Chaoxiong Ye
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| | - Qiang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| |
Collapse
|
5
|
Wheelock JR, Long NM. The persistence of memory: prior memory responses modulate behavior and brain state engagement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588245. [PMID: 38645245 PMCID: PMC11030234 DOI: 10.1101/2024.04.05.588245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Memory brain states may influence how we experience an event. Memory encoding and retrieval constitute neurally dissociable brain states that individuals can selectively engage based on top-down goals. To the extent that memory states linger in time - as suggested by prior behavioral work - memory states may influence not only the current experience, but also subsequent stimuli and judgments. Thus lingering memory states may have broad influences on cognition, yet this account has not been directly tested utilizing neural measures of memory states. Here we address this gap by testing the hypothesis that memory brain states are modulated by memory judgments, and that these brain states persist for several hundred milliseconds. We recorded scalp electroencephalography (EEG) while participants completed a recognition memory task. We used an independently validated multivariate mnemonic state classifier to assess memory state engagement. We replicate prior behavioral findings; however, our neural findings run counter to the predictions made on the basis of the behavioral data. Surprisingly, we find that prior responses modulate current memory state engagement on the basis of response congruency. That is, we find strong engagement of the retrieval state on incongruent trials - when a target is preceded by a correct rejection of a lure and when a lure is preceded by successful recognition of a target. These findings indicate that cortical brain states are influenced by prior judgments and suggest that a non-mnemonic, internal attention state may be recruited to in the face of changing demands in a dynamic environment.
Collapse
|
6
|
Smith DE, Long NM. Top-down task goals induce the retrieval state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583353. [PMID: 38496465 PMCID: PMC10942341 DOI: 10.1101/2024.03.04.583353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Engaging the retrieval state (Tulving, 1983) impacts processing and behavior (Long & Kuhl, 2019, 2021; Smith, Moore, & Long, 2022), but the extent to which top-down factors - explicit instructions and goals - vs. bottom-up factors - stimulus properties such as repetition and similarity - jointly or independently induce the retrieval state is unclear. Identifying the impact of bottom-up and top-down factors on retrieval state engagement is critical for understanding how control of task-relevant vs. task-irrelevant brain states influence cognition. We conducted between-subjects recognition memory tasks on male and female human participants in which we varied test phase goals. We recorded scalp electroencephalography and used an independently validated mnemonic state classifier (Long, 2023) to measure retrieval state engagement as a function of top-down task goals (recognize old vs. detect new items) and bottom-up stimulus repetition (hits vs. correct rejections). We find that whereas the retrieval state is engaged for hits regardless of top-down goals, the retrieval state is only engaged during correct rejections when the top-down goal is to recognize old items. Furthermore, retrieval state engagement is greater for low compared to high confidence hits when the task goal is to recognize old items. Together, these results suggest that top-down demands to recognize old items induce the retrieval state independent from bottom-up factors, potentially reflecting the recruitment of internal attention to enable access of a stored representation. Significance Statement Both top-down goals and automatic bottom-up influences may lead us into a retrieval brain state - a whole-brain pattern of activity that supports our ability to remember the past. Here we tested the extent to which top-down vs. bottom-up factors independently influence the retrieval state by manipulating participants' goals and stimulus repetition during a memory test. We find that in response to the top-down goal to recognize old items, the retrieval state is engaged for both old and new probes, suggesting that top-down and bottom-up factors independently engage the retrieval state. Our interpretation is that top-down demands recruit internal attention in service of the attempt to access a stored representation.
Collapse
|
7
|
Nolden S, Turan G, Güler B, Günseli E. Prediction error and event segmentation in episodic memory. Neurosci Biobehav Rev 2024; 157:105533. [PMID: 38184184 DOI: 10.1016/j.neubiorev.2024.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Organizing the continuous flow of experiences into meaningful events is a crucial prerequisite for episodic memory. Prediction error and event segmentation both play important roles in supporting the genesis of meaningful mnemonic representations of events. We review theoretical contributions discussing the relationship between prediction error and event segmentation, as well as literature on episodic memory related to prediction error and event segmentation. We discuss the extent of overlap of mechanisms underlying memory emergence through prediction error and event segmentation, with a specific focus on attention and working memory. Finally, we identify areas in research that are currently developing and suggest future directions. We provide an overview of mechanisms underlying memory formation through predictions, violations of predictions, and event segmentation.
Collapse
Affiliation(s)
- Sophie Nolden
- Department for Developmental Psychology, Institute of Psychology, Goethe-University Frankfurt am Main, Germany; IDeA-Center for Research on Individual Development and Adaptive Education of Children at Risk, Frankfurt am Main, Germany.
| | - Gözem Turan
- Department for Developmental Psychology, Institute of Psychology, Goethe-University Frankfurt am Main, Germany; IDeA-Center for Research on Individual Development and Adaptive Education of Children at Risk, Frankfurt am Main, Germany
| | - Berna Güler
- Department of Psychology, Sabanci University, Istanbul, Turkey
| | - Eren Günseli
- Department of Psychology, Sabanci University, Istanbul, Turkey
| |
Collapse
|
8
|
Pastötter B, Frings C. Prestimulus alpha power signals attention to retrieval. Eur J Neurosci 2023; 58:4328-4340. [PMID: 37936521 DOI: 10.1111/ejn.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
The human brain is in distinct processing modes at different times. Specifically, a distinction can be made between encoding and retrieval modes, which refer to the brain's state when it is storing new information or searching for old information, respectively. Recent research proposed the idea of a "ready-to-encode" mode, which describes a prestimulus effect in brain activity that signals (external) attention to encoding and predicts subsequent memory performance. Whether there is also a corresponding "ready-to-retrieve" mode in human brain activity is currently unclear. In this study, we examined whether prestimulus oscillations can be linked to (internal) attention to retrieval. We show that task cues to prepare for retrieval (or testing) in comparison with restudy of previously studied vocabulary word pairs led to a significant decrease of prestimulus alpha power just before the onset of word stimuli. Beamformer analysis localized this effect in the right secondary visual cortex (Brodmann area 18). Correlation analysis showed that the task cue-induced, prestimulus alpha power effect is positively related to stimulus-induced alpha/beta power, which in turn predicted participants' memory performance. The results are consistent with the idea that prestimulus alpha power signals internal attention to retrieval, which promotes the elaborative processing of episodic memories. Future research on brain-computer interfaces may find the findings interesting regarding the potential of using online measures of fluctuating alpha oscillations to trigger the presentation and sequencing of restudy and testing trials, ultimately enhancing instructional learning strategies.
Collapse
Affiliation(s)
- Bernhard Pastötter
- Department of Psychology, University of Trier, Trier, Germany
- Institute for Cognitive and Affective Neuroscience (ICAN), University of Trier, Trier, Germany
| | - Christian Frings
- Department of Psychology, University of Trier, Trier, Germany
- Institute for Cognitive and Affective Neuroscience (ICAN), University of Trier, Trier, Germany
| |
Collapse
|