1
|
Qi G, Battle A. Computational methods for allele-specific expression in single cells. Trends Genet 2024; 40:939-949. [PMID: 39127549 PMCID: PMC11537817 DOI: 10.1016/j.tig.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Allele-specific expression (ASE) is a powerful signal that can be used to investigate multiple molecular mechanisms, such as cis-regulatory effects and imprinting. Single-cell RNA-sequencing (scRNA-seq) enables ASE characterization at the resolution of individual cells. In this review, we highlight the computational methods for processing and analyzing single-cell ASE data. We first describe a bioinformatics pipeline to obtain ASE counts from raw reads synthesized from previous literature. We then discuss statistical methods for detecting allelic imbalance and its variability across conditions using scRNA-seq data. In addition, we describe other methods that use single-cell ASE to address specific biological questions. Finally, we discuss future directions and emphasize the need for an integrated, optimized bioinformatics pipeline, and further development of statistical methods for different technologies.
Collapse
Affiliation(s)
- Guanghao Qi
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Wang R, Zheng Y, Zhang Z, Song K, Wu E, Zhu X, Wu TP, Ding J. MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell. Nat Commun 2024; 15:8798. [PMID: 39394211 PMCID: PMC11470080 DOI: 10.1038/s41467-024-53114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Transposable elements (TEs) are crucial for genetic diversity and gene regulation. Current single-cell quantification methods often align multi-mapping reads to either 'best-mapped' or 'random-mapped' locations and categorize them at the subfamily levels, overlooking the biological necessity for accurate, locus-specific TE quantification. Moreover, these existing methods are primarily designed for and focused on transcriptomics data, which restricts their adaptability to single-cell data of other modalities. To address these challenges, here we introduce MATES, a deep-learning approach that accurately allocates multi-mapping reads to specific loci of TEs, utilizing context from adjacent read alignments flanking the TE locus. When applied to diverse single-cell omics datasets, MATES shows improved performance over existing methods, enhancing the accuracy of TE quantification and aiding in the identification of marker TEs for identified cell populations. This development facilitates the exploration of single-cell heterogeneity and gene regulation through the lens of TEs, offering an effective transposon quantification tool for the single-cell genomics community.
Collapse
Affiliation(s)
- Ruohan Wang
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Yumin Zheng
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Zijian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kailu Song
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Erxi Wu
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, USA
- College of Medicine and Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
| | | | - Tao P Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Jun Ding
- School of Computer Science, McGill University, Montreal, Quebec, Canada.
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Department of Medicine, McGill University, Montreal, Quebec, Canada.
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada.
- Mila-Quebec AI Institue, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024:10.1038/s41568-024-00750-2. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Capitanchik C, Wilkins OG, Wagner N, Gagneur J, Ule J. From computational models of the splicing code to regulatory mechanisms and therapeutic implications. Nat Rev Genet 2024:10.1038/s41576-024-00774-2. [PMID: 39358547 DOI: 10.1038/s41576-024-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Since the discovery of RNA splicing and its role in gene expression, researchers have sought a set of rules, an algorithm or a computational model that could predict the splice isoforms, and their frequencies, produced from any transcribed gene in a specific cellular context. Over the past 30 years, these models have evolved from simple position weight matrices to deep-learning models capable of integrating sequence data across vast genomic distances. Most recently, new model architectures are moving the field closer to context-specific alternative splicing predictions, and advances in sequencing technologies are expanding the type of data that can be used to inform and interpret such models. Together, these developments are driving improved understanding of splicing regulatory mechanisms and emerging applications of the splicing code to the rational design of RNA- and splicing-based therapeutics.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Oscar G Wilkins
- The Francis Crick Institute, London, UK
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Kumari P, Kaur M, Dindhoria K, Ashford B, Amarasinghe SL, Thind AS. Advances in long-read single-cell transcriptomics. Hum Genet 2024; 143:1005-1020. [PMID: 38787419 PMCID: PMC11485027 DOI: 10.1007/s00439-024-02678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Long-read single-cell transcriptomics (scRNA-Seq) is revolutionizing the way we profile heterogeneity in disease. Traditional short-read scRNA-Seq methods are limited in their ability to provide complete transcript coverage, resolve isoforms, and identify novel transcripts. The scRNA-Seq protocols developed for long-read sequencing platforms overcome these limitations by enabling the characterization of full-length transcripts. Long-read scRNA-Seq techniques initially suffered from comparatively poor accuracy compared to short read scRNA-Seq. However, with improvements in accuracy, accessibility, and cost efficiency, long-reads are gaining popularity in the field of scRNA-Seq. This review details the advances in long-read scRNA-Seq, with an emphasis on library preparation protocols and downstream bioinformatics analysis tools.
Collapse
Affiliation(s)
- Pallawi Kumari
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Manmeet Kaur
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Kiran Dindhoria
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Bruce Ashford
- Illawarra Shoalhaven Local Health District (ISLHD), NSW Health, Wollongong, NSW, Australia
| | - Shanika L Amarasinghe
- Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, VIC, 3025, Australia
| | - Amarinder Singh Thind
- Illawarra Shoalhaven Local Health District (ISLHD), NSW Health, Wollongong, NSW, Australia.
- The School of Chemistry and Molecular Bioscience (SCMB), University of Wollongong, Loftus St, Wollongong, NSW, 2500, Australia.
| |
Collapse
|
6
|
Zhang T, Li H, Jiang M, Hou H, Gao Y, Li Y, Wang F, Wang J, Peng K, Liu YX. Nanopore sequencing: flourishing in its teenage years. J Genet Genomics 2024:S1673-8527(24)00244-3. [PMID: 39293510 DOI: 10.1016/j.jgg.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, nanopore sequencing has experienced significant advancements and changes, transitioning from an initially emerging technology to a significant instrument in the field of genomic sequencing. However, as advancements in next-generation sequencing technology persist, nanopore sequencing also improves. This paper reviews the developments, applications, and outlook on nanopore sequencing technology. Currently, nanopore sequencing supports both DNA and RNA sequencing, making it widely applicable in areas such as telomere-to-telomere (T2T) genome assembly, direct RNA sequencing (DRS), and metagenomics. The openness and versatility of nanopore sequencing have established it as a preferred option for an increasing number of research teams, signaling a transformative influence on life science research. As nanopore sequencing technology advances, it provides a faster, more cost-effective approach with extended read lengths, demonstrating the significant potential for complex genome assembly, pathogen detection, environmental monitoring, and human disease research, offering a fresh perspective in sequencing technologies.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; Wuhan Benagen Technology Co., Ltd, Wuhan, 430000, China
| | - Hanzhou Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, 430000, China
| | - Mian Jiang
- Wuhan Benagen Technology Co., Ltd, Wuhan, 430000, China
| | - Huiyu Hou
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yunyun Gao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yali Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, 430000, China
| | - Fuhao Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, 430000, China
| | - Jun Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, 430000, China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Yong-Xin Liu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
7
|
Liu B, Hu S, Wang X. Applications of single-cell technologies in drug discovery for tumor treatment. iScience 2024; 27:110486. [PMID: 39171294 PMCID: PMC11338156 DOI: 10.1016/j.isci.2024.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Single-cell technologies have been known as advanced and powerful tools to study tumor biological systems at the single-cell resolution and are playing increasingly critical roles in multiple stages of drug discovery and development. Specifically, single-cell technologies can promote the discovery of drug targets, help high-throughput screening at single-cell level, and contribute to pharmacokinetic studies of anti-tumor drugs. Emerging single-cell analysis technologies have been developed to further integrating multidimensional single-cell molecular features, expanding the scale of single-cell data, profiling phenotypic impact of genes in single cell, and providing full-length coverage single-cell sequencing. In this review, we systematically summarized the applications of single-cell technologies in various sections of drug discovery for tumor treatment, including target identification, high-throughput drug screening, and pharmacokinetic evaluation and highlighted emerging single-cell technologies in providing in-depth understanding of tumor biology. Single-cell-technology-based drug discovery is expected to further optimize therapeutic strategies and improve clinical outcomes of tumor patients.
Collapse
Affiliation(s)
- Bingyu Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China
| |
Collapse
|
8
|
Byrne A, Le D, Sereti K, Menon H, Vaidya S, Patel N, Lund J, Xavier-Magalhães A, Shi M, Liang Y, Sterne-Weiler T, Modrusan Z, Stephenson W. Single-cell long-read targeted sequencing reveals transcriptional variation in ovarian cancer. Nat Commun 2024; 15:6916. [PMID: 39134520 PMCID: PMC11319652 DOI: 10.1038/s41467-024-51252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Single-cell RNA sequencing predominantly employs short-read sequencing to characterize cell types, states and dynamics; however, it is inadequate for comprehensive characterization of RNA isoforms. Long-read sequencing technologies enable single-cell RNA isoform detection but are hampered by lower throughput and unintended sequencing of artifacts. Here we develop Single-cell Targeted Isoform Long-Read Sequencing (scTaILoR-seq), a hybridization capture method which targets over a thousand genes of interest, improving the median number of on-target transcripts per cell by 29-fold. We use scTaILoR-seq to identify and quantify RNA isoforms from ovarian cancer cell lines and primary tumors, yielding 10,796 single-cell transcriptomes. Using long-read variant calling we reveal associations of expressed single nucleotide variants (SNVs) with alternative transcript structures. Phasing of SNVs across transcripts enables the measurement of allelic imbalance within distinct cell populations. Overall, scTaILoR-seq is a long-read targeted RNA sequencing method and analytical framework for exploring transcriptional variation at single-cell resolution.
Collapse
Affiliation(s)
- Ashley Byrne
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Daniel Le
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Kostianna Sereti
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Hari Menon
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Samir Vaidya
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Neha Patel
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Jessica Lund
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Ana Xavier-Magalhães
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Minyi Shi
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Timothy Sterne-Weiler
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
- Department of Oncology Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA.
| | - William Stephenson
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
9
|
Chow A, Lareau CA. Concepts and new developments in droplet-based single cell multi-omics. Trends Biotechnol 2024:S0167-7799(24)00184-7. [PMID: 39095258 DOI: 10.1016/j.tibtech.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Single cell sequencing technologies have become a fixture in the molecular profiling of cells due to their ease, flexibility, and commercial availability. In particular, partitioning individual cells inside oil droplets via microfluidic reactions enables transcriptomic or multi-omic measurements for thousands of cells in parallel. Complementing the multitude of biological discoveries from genomics analyses, the past decade has brought new capabilities from assay baselines to enable a deeper understanding of the complex data from single cell multi-omics. Here, we highlight four innovations that have improved the reliability and understanding of droplet microfluidic assays. We emphasize new developments that further orient principles of technology development and guidelines for the design, benchmarking, and implementation of new droplet-based methodologies.
Collapse
Affiliation(s)
- Arthur Chow
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caleb A Lareau
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Guo W, Zhang Z, Kang J, Gao Y, Qian P, Xie G. Single-cell transcriptome profiling highlights the importance of telocyte, kallikrein genes, and alternative splicing in mouse testes aging. Sci Rep 2024; 14:14795. [PMID: 38926537 PMCID: PMC11208613 DOI: 10.1038/s41598-024-65710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Advancing healthcare for elderly men requires a deeper understanding of testicular aging processes. In this study, we conducted transcriptomic profiling of 43,323 testicular single cells from young and old mice, shedding light on 1032 telocytes-an underexplored testicular cell type in previous research. Our study unveiled 916 age-related differentially expressed genes (age-DEGs), with telocytes emerging as the cell type harboring the highest count of age-DEGs. Of particular interest, four genes (Klk1b21, Klk1b22, Klk1b24, Klk1b27) from the Kallikrein family, specifically expressed in Leydig cells, displayed down-regulation in aged testes. Moreover, cell-type-level splicing analyses unveiled 1838 age-related alternative splicing (AS) events. While we confirmed the presence of more age-DEGs in somatic cells compared to germ cells, unexpectedly, more age-related AS events were identified in germ cells. Further experimental validation highlighted 4930555F03Rik, a non-coding RNA gene exhibiting significant age-related AS changes. Our study represents the first age-related single-cell transcriptomic investigation of testicular telocytes and Kallikrein genes in Leydig cells, as well as the first delineation of cell-type-level AS dynamics during testicular aging in mice.
Collapse
Affiliation(s)
- Wuyier Guo
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Ziyan Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Jiahui Kang
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Yajing Gao
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Peipei Qian
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Gangcai Xie
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China.
| |
Collapse
|
11
|
Gupta P, O’Neill H, Wolvetang E, Chatterjee A, Gupta I. Advances in single-cell long-read sequencing technologies. NAR Genom Bioinform 2024; 6:lqae047. [PMID: 38774511 PMCID: PMC11106032 DOI: 10.1093/nargab/lqae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
With an increase in accuracy and throughput of long-read sequencing technologies, they are rapidly being assimilated into the single-cell sequencing pipelines. For transcriptome sequencing, these techniques provide RNA isoform-level information in addition to the gene expression profiles. Long-read sequencing technologies not only help in uncovering complex patterns of cell-type specific splicing, but also offer unprecedented insights into the origin of cellular complexity and thus potentially new avenues for drug development. Additionally, single-cell long-read DNA sequencing enables high-quality assemblies, structural variant detection, haplotype phasing, resolving high-complexity regions, and characterization of epigenetic modifications. Given that significant progress has primarily occurred in single-cell RNA isoform sequencing (scRiso-seq), this review will delve into these advancements in depth and highlight the practical considerations and operational challenges, particularly pertaining to downstream analysis. We also aim to offer a concise introduction to complementary technologies for single-cell sequencing of the genome, epigenome and epitranscriptome. We conclude by identifying certain key areas of innovation that may drive these technologies further and foster more widespread application in biomedical science.
Collapse
Affiliation(s)
- Pallavi Gupta
- University of Queensland – IIT Delhi Research Academy, Hauz Khas, New Delhi 110016, India
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hannah O’Neill
- Department of Pathology, Dunedin School of Medicine, University of Otago, 58 Hanover Street, Dunedin 9054, New Zealand
| | - Ernst J Wolvetang
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 58 Hanover Street, Dunedin 9054, New Zealand
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
12
|
Abedini-Nassab R, Taheri F, Emamgholizadeh A, Naderi-Manesh H. Single-Cell RNA Sequencing in Organ and Cell Transplantation. BIOSENSORS 2024; 14:189. [PMID: 38667182 PMCID: PMC11048310 DOI: 10.3390/bios14040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Single-cell RNA sequencing is a high-throughput novel method that provides transcriptional profiling of individual cells within biological samples. This method typically uses microfluidics systems to uncover the complex intercellular communication networks and biological pathways buried within highly heterogeneous cell populations in tissues. One important application of this technology sits in the fields of organ and stem cell transplantation, where complications such as graft rejection and other post-transplantation life-threatening issues may occur. In this review, we first focus on research in which single-cell RNA sequencing is used to study the transcriptional profile of transplanted tissues. This technology enables the analysis of the donor and recipient cells and identifies cell types and states associated with transplant complications and pathologies. We also review the use of single-cell RNA sequencing in stem cell implantation. This method enables studying the heterogeneity of normal and pathological stem cells and the heterogeneity in cell populations. With their remarkably rapid pace, the single-cell RNA sequencing methodologies will potentially result in breakthroughs in clinical transplantation in the coming years.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Fatemeh Taheri
- Biomedical Engineering Department, University of Neyshabur, Neyshabur P.O. Box 9319774446, Iran
| | - Ali Emamgholizadeh
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran;
- Department of Biophysics, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| |
Collapse
|
13
|
Yuan CU, Quah FX, Hemberg M. Single-cell and spatial transcriptomics: Bridging current technologies with long-read sequencing. Mol Aspects Med 2024; 96:101255. [PMID: 38368637 DOI: 10.1016/j.mam.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Single-cell technologies have transformed biomedical research over the last decade, opening up new possibilities for understanding cellular heterogeneity, both at the genomic and transcriptomic level. In addition, more recent developments of spatial transcriptomics technologies have made it possible to profile cells in their tissue context. In parallel, there have been substantial advances in sequencing technologies, and the third generation of methods are able to produce reads that are tens of kilobases long, with error rates matching the second generation short reads. Long reads technologies make it possible to better map large genome rearrangements and quantify isoform specific abundances. This further improves our ability to characterize functionally relevant heterogeneity. Here, we show how researchers have begun to combine single-cell, spatial transcriptomics, and long-read technologies, and how this is resulting in powerful new approaches to profiling both the genome and the transcriptome. We discuss the achievements so far, and we highlight remaining challenges and opportunities.
Collapse
Affiliation(s)
- Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Hemberg
- Gene Lay Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Dondi A, Borgsmüller N, Ferreira PF, Haas BJ, Jacob F, Heinzelmann-Schwarz V, Beerenwinkel N. De novo detection of somatic variants in long-read single-cell RNA sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583775. [PMID: 38496441 PMCID: PMC10942462 DOI: 10.1101/2024.03.06.583775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In cancer, genetic and transcriptomic variations generate clonal heterogeneity, possibly leading to treatment resistance. Long-read single-cell RNA sequencing (LR scRNA-seq) has the potential to detect genetic and transcriptomic variations simultaneously. Here, we present LongSom, a computational workflow leveraging LR scRNA-seq data to call de novo somatic single-nucleotide variants (SNVs), copy-number alterations (CNAs), and gene fusions to reconstruct the tumor clonal heterogeneity. For SNV calling, LongSom distinguishes somatic SNVs from germline polymorphisms by reannotating marker gene expression-based cell types using called variants and applying strict filters. Applying LongSom to ovarian cancer samples, we detected clinically relevant somatic SNVs that were validated against single-cell and bulk panel DNA-seq data and could not be detected with short-read (SR) scRNA-seq. Leveraging somatic SNVs and fusions, LongSom found subclones with different predicted treatment outcomes. In summary, LongSom enables de novo SNVs, CNAs, and fusions detection, thus enabling the study of cancer evolution, clonal heterogeneity, and treatment resistance.
Collapse
Affiliation(s)
- Arthur Dondi
- ETH Zurich, Department of Biosystems Science and Engineering, Schanzenstrasse 44, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Nico Borgsmüller
- ETH Zurich, Department of Biosystems Science and Engineering, Schanzenstrasse 44, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Pedro F. Ferreira
- ETH Zurich, Department of Biosystems Science and Engineering, Schanzenstrasse 44, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Brian J. Haas
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Francis Jacob
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | - Niko Beerenwinkel
- ETH Zurich, Department of Biosystems Science and Engineering, Schanzenstrasse 44, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Schanzenstrasse 44, 4056 Basel, Switzerland
| |
Collapse
|
15
|
Olivucci G, Iovino E, Innella G, Turchetti D, Pippucci T, Magini P. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front Genet 2024; 15:1374860. [PMID: 38510277 PMCID: PMC10951082 DOI: 10.3389/fgene.2024.1374860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical application of technological progress in the identification of DNA alterations has always led to improvements of diagnostic yields in genetic medicine. At chromosome side, from cytogenetic techniques evaluating number and gross structural defects to genomic microarrays detecting cryptic copy number variants, and at molecular level, from Sanger method studying the nucleotide sequence of single genes to the high-throughput next-generation sequencing (NGS) technologies, resolution and sensitivity progressively increased expanding considerably the range of detectable DNA anomalies and alongside of Mendelian disorders with known genetic causes. However, particular genomic regions (i.e., repetitive and GC-rich sequences) are inefficiently analyzed by standard genetic tests, still relying on laborious, time-consuming and low-sensitive approaches (i.e., southern-blot for repeat expansion or long-PCR for genes with highly homologous pseudogenes), accounting for at least part of the patients with undiagnosed genetic disorders. Third generation sequencing, generating long reads with improved mappability, is more suitable for the detection of structural alterations and defects in hardly accessible genomic regions. Although recently implemented and not yet clinically available, long read sequencing (LRS) technologies have already shown their potential in genetic medicine research that might greatly impact on diagnostic yield and reporting times, through their translation to clinical settings. The main investigated LRS application concerns the identification of structural variants and repeat expansions, probably because techniques for their detection have not evolved as rapidly as those dedicated to single nucleotide variants (SNV) identification: gold standard analyses are karyotyping and microarrays for balanced and unbalanced chromosome rearrangements, respectively, and southern blot and repeat-primed PCR for the amplification and sizing of expanded alleles, impaired by limited resolution and sensitivity that have not been significantly improved by the advent of NGS. Nevertheless, more recently, with the increased accuracy provided by the latest product releases, LRS has been tested also for SNV detection, especially in genes with highly homologous pseudogenes and for haplotype reconstruction to assess the parental origin of alleles with de novo pathogenic variants. We provide a review of relevant recent scientific papers exploring LRS potential in the diagnosis of genetic diseases and its potential future applications in routine genetic testing.
Collapse
Affiliation(s)
- Giulia Olivucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Innella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
16
|
Krupina K, Goginashvili A, Cleveland DW. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat Rev Genet 2024; 25:196-210. [PMID: 37938738 PMCID: PMC10922386 DOI: 10.1038/s41576-023-00663-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.
Collapse
Affiliation(s)
- Ksenia Krupina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Alexander Goginashvili
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Adedayo AA, Babalola OO. Genomic mechanisms of plant growth-promoting bacteria in the production of leguminous crops. Front Genet 2023; 14:1276003. [PMID: 38028595 PMCID: PMC10654986 DOI: 10.3389/fgene.2023.1276003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Legumes are highly nutritious in proteins and are good food for humans and animals because of their nutritional values. Plant growth-promoting bacteria (PGPR) are microbes dwelling in the rhizosphere soil of a plant contributing to the healthy status, growth promotion of crops, and preventing the invasion of diseases. Root exudates produced from the leguminous plants' roots can lure microbes to migrate to the rhizosphere region in other to carry out their potential activities which reveals the symbiotic association of the leguminous plant and the PGPR (rhizobia). To have a better cognition of the PGPR in the rhizosphere of leguminous plants, genomic analyses would be conducted employing various genomic sequences to observe the microbial community and their functions in the soil. Comparative genomic mechanism of plant growth-promoting rhizobacteria (PGPR) was discussed in this review which reveals the activities including plant growth promotion, phosphate solubilization, production of hormones, and plant growth-promoting genes required for plant development. Progress in genomics to improve the collection of genotyping data was revealed in this review. Furthermore, the review also revealed the significance of plant breeding and other analyses involving transcriptomics in bioeconomy promotion. This technological innovation improves abundant yield and nutritional requirements of the crops in unfavorable environmental conditions.
Collapse
|