1
|
Romeggio F, Schouenborg JF, Vesborg PCK, Hansen O, Kibsgaard J, Chorkendorff I, Damsgaard CD. Magnetron Sputtering of Pure δ-Ni 5Ga 3 Thin Films for CO 2 Hydrogenation. ACS Catal 2024; 14:12592-12601. [PMID: 39169904 PMCID: PMC11334101 DOI: 10.1021/acscatal.4c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Previous studies have identified δ-Ni5Ga3 as a promising catalyst for the hydrogenation of CO2 to methanol at atmospheric pressure. Given its recent discovery, the current understanding of this catalyst is very limited. Additionally, the presence of multiple thermodynamically stable crystal phases in the Ni/Ga system complicates the experiments and their interpretation. Conventional synthesis methods often result in the production of unwanted phases, potentially leading to incorrect conclusions. To address this issue, this study focuses on the synthesis of pure δ-Ni5Ga3 using magnetron sputtering deposition followed by low-temperature H2 annealing. Extensive characterization confirmed the reproducible synthesis of well-defined δ-Ni5Ga3 thin films. These films, deposited directly into state-of-the-art μ-reactors, demonstrated methanol production at low temperatures and maintained a high stability over time. This method allowed for detailed surface and bulk characterization before and after the reaction, providing a comprehensive understanding of the deactivation mechanism. Our findings significantly contribute to the understanding of the Ni/Ga system and its behavior during catalytic activity, deactivation, and regeneration. This study also sets an example of how physical synthesis methods such as magnetron sputtering can be effectively employed to investigate complex catalytic systems, offering a viable alternative to more elaborate chemical methods.
Collapse
Affiliation(s)
- Filippo Romeggio
- DTU
Physics, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | | | - Peter C. K. Vesborg
- DTU
Physics, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Ole Hansen
- DTU
Nanolab, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Jakob Kibsgaard
- DTU
Physics, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Ib Chorkendorff
- DTU
Physics, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Christian D. Damsgaard
- DTU
Physics, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
- DTU
Nanolab, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| |
Collapse
|
2
|
Wang Z, Zhang L, Liu X, Ye L, Zhao S, Chen Y, Yan H, Han J, Lin H. Superwetting Nanofluids of NiO x-Nanocrystals/CsBr Solution for Fabricating Quality NiO x-CsPbBr 3 Gradient Hybrid Film in Carbon-Based Perovskite Solar Cells. SMALL METHODS 2024:e2400283. [PMID: 38766885 DOI: 10.1002/smtd.202400283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Indexed: 05/22/2024]
Abstract
The wettability of precursor solution on substrates is the critical factor for fabricating quality film. In this work, superwetting nanofluids (NFs) of non-stoichiometric nickel oxide (NiOx) nanocrystals (NCs)-CsBr solution are first utilized to fabricate quality NiOx-CsPbBr3 hybrid film with gradient-distributed NiOx NCs in the upper part for constructing hole transport ladder in carbon-based perovskite solar cells (C-PSCs). As anticipated, the crystalline properties (improved crystalline grain diameters and reduced impurity phase) and hole extraction/transport of the NiOx-CsPbBr3 hybrid film are improved after incorporating NiOx NCs into CsPbBr3. This originates from the superb wettability of NiOx-CsBr NFs on substrates and the excellent hole-transport properties of NiOx. Consequently, the C-PSCs with the structure of FTO/SnO2/NiOx-CsPbBr3/C displays a power conversion efficiency of 10.07%, resulting in a 23.6% improvement as compared with the pristine CsPbBr3 cell. This work opens up a promising strategy to improve the absorber layer in PSCs by incorporating NCs into perovskite layers through the use of the superwettability of NFs and by composition gradient engineering.
Collapse
Affiliation(s)
- Zengyi Wang
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Lele Zhang
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Xuanling Liu
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Lin Ye
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Shuang Zhao
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Yingyu Chen
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Huiyu Yan
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Jianhua Han
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, 300300, China
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Hong Lin
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Hsieh TE, Frisch J, Wilks RG, Papp C, Bär M. Impact of Catalysis-Relevant Oxidation and Annealing Treatments on Nanostructured GaRh Alloys. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19858-19865. [PMID: 38591845 DOI: 10.1021/acsami.4c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In this study, we examine the surface-derived electronic and chemical structures of nanostructured GaRh alloys as a model system for supported catalytically active liquid metal solutions (SCALMS), a novel catalyst candidate for dehydrogenation reactions that are important for the petrochemical and hydrogen energy industry. It is reported that under ambient conditions, SCALMS tends to form a gallium oxide shell, which can be removed by an activation treatment at elevated temperatures and hydrogen flow to enhance the catalytic reactivity. We prepared a 7 at. % Rh containing the GaRh sample and interrogated the evolution of the surface chemical and electronic structure by photoelectron spectroscopy (complemented by scanning electron microscopy) upon performing surface oxidation and (activation treatment mimicking) annealing treatments in ultrahigh vacuum conditions. The initially pronounced Rh 4d and Fermi level-derived states in the valence band spectra disappear upon oxidation (due to formation of a GaOx shell) but reemerge upon annealing, especially for temperatures of 600 °C and above, i.e., when the GaOx shell is efficiently being removed and the Ga matrix is expected to be liquid. At the same temperature, new spectroscopic features at both the high and low binding energy sides of the Rh 3d5/2 spectra are observed, which we attribute to new GaRh species with depleted and enriched Rh contents, respectively. A liquefied and GaOx-free surface is also expected for GaRh SCALMS at reaction conditions, and thus the revealed high-temperature properties of the GaRh alloy provide insights about respective catalysts at work.
Collapse
Affiliation(s)
- Tzung-En Hsieh
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany
| | - Johannes Frisch
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany
- Energy Materials In-situ Laboratory Berlin (EMIL), HZB, 12489 Berlin, Germany
| | - Regan G Wilks
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany
- Energy Materials In-situ Laboratory Berlin (EMIL), HZB, 12489 Berlin, Germany
| | - Christian Papp
- Freie Universität Berlin, Physical and Theoretical Chemistry, 14195Berlin, Germany
| | - Marcus Bär
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
- Energy Materials In-situ Laboratory Berlin (EMIL), HZB, 12489 Berlin, Germany
- Department X-ray Spectroscopy at Interfaces of Thin Films, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), 12489 Berlin, Germany
| |
Collapse
|
4
|
Zimmerli NK, Rochlitz L, Checchia S, Müller CR, Copéret C, Abdala PM. Structure and Role of a Ga-Promoter in Ni-Based Catalysts for the Selective Hydrogenation of CO 2 to Methanol. JACS AU 2024; 4:237-252. [PMID: 38274252 PMCID: PMC10806875 DOI: 10.1021/jacsau.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Supported, bimetallic catalysts have shown great promise for the selective hydrogenation of CO2 to methanol. In this study, we decipher the catalytically active structure of Ni-Ga-based catalysts. To this end, model Ni-Ga-based catalysts, with varying Ni:Ga ratios, were prepared by a surface organometallic chemistry approach. In situ differential pair distribution function (d-PDF) analysis revealed that catalyst activation in H2 leads to the formation of nanoparticles based on a Ni-Ga face-centered cubic (fcc) alloy along with a small quantity of GaOx. Structure refinements of the d-PDF data enabled us to determine the amount of both alloyed Ga and GaOx species. In situ X-ray absorption spectroscopy experiments confirmed the presence of alloyed Ga and GaOx and indicated that alloying with Ga affects the electronic structure of metallic Ni (viz., Niδ-). Both the Ni:Ga ratio in the alloy and the quantity of GaOx are found to minimize methanation and to determine the methanol formation rate and the resulting methanol selectivity. The highest formation rate and methanol selectivity are found for a Ni-Ga alloy having a Ni:Ga ratio of ∼75:25 along with a small quantity of oxidized Ga species (0.14 molNi-1). Furthermore, operando infrared spectroscopy experiments indicate that GaOx species play a role in the stabilization of formate surface intermediates, which are subsequently further hydrogenated to methoxy species and ultimately to methanol. Notably, operando XAS shows that alloying between Ni and Ga is maintained under reaction conditions and is key to attaining a high methanol selectivity (by minimizing CO and CH4 formation), while oxidized Ga species enhance the methanol formation rate.
Collapse
Affiliation(s)
- Nora K. Zimmerli
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| | - Lukas Rochlitz
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, CH 8093 Zürich, Switzerland
| | - Stefano Checchia
- ESRF
− The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Christoph R. Müller
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, CH 8093 Zürich, Switzerland
| | - Paula M. Abdala
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| |
Collapse
|