1
|
Scharfenstein HJ, Peplow LM, Alvarez-Roa C, Nitschke MR, Chan WY, Buerger P, van Oppen MJH. Pushing the limits: expanding the temperature tolerance of a coral photosymbiont through differing selection regimes. THE NEW PHYTOLOGIST 2024; 243:2130-2145. [PMID: 39049585 DOI: 10.1111/nph.19996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Coral thermal bleaching resilience can be improved by enhancing photosymbiont thermal tolerance via experimental evolution. While successful for some strains, selection under stable temperatures was ineffective at increasing the thermal threshold of an already thermo-tolerant photosymbiont (Durusdinium trenchii). Corals from environments with fluctuating temperatures tend to have comparatively high heat tolerance. Therefore, we investigated whether exposure to temperature oscillations can raise the upper thermal limit of D. trenchii. We exposed a D. trenchii strain to stable and fluctuating temperature profiles, which varied in oscillation frequency. After 2.1 yr (54-73 generations), we characterised the adaptive responses under the various experimental evolution treatments by constructing thermal performance curves of growth from 21 to 31°C for the heat-evolved and wild-type lineages. Additionally, the accumulation of extracellular reactive oxygen species, photophysiology, photosynthesis and respiration rates were assessed under increasing temperatures. Of the fluctuating temperature profiles investigated, selection under the most frequent oscillations (diurnal) induced the greatest widening of D. trenchii's thermal niche. Continuous selection under elevated temperatures induced the only increase in thermal optimum and a degree of generalism. Our findings demonstrate how differing levels of thermal homogeneity during selection drive unique adaptive responses to heat in a coral photosymbiont.
Collapse
Affiliation(s)
- Hugo J Scharfenstein
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Lesa M Peplow
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Carlos Alvarez-Roa
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Wing Yan Chan
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Patrick Buerger
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| |
Collapse
|
2
|
McCarthy OS, Winston Pomeroy M, Smith JE. Corals that survive repeated thermal stress show signs of selection and acclimatization. PLoS One 2024; 19:e0303779. [PMID: 39083457 PMCID: PMC11290665 DOI: 10.1371/journal.pone.0303779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/01/2024] [Indexed: 08/02/2024] Open
Abstract
Climate change is transforming coral reefs by increasing the frequency and intensity of marine heatwaves, often leading to coral bleaching and mortality. Coral communities have demonstrated modest increases in thermal tolerance following repeated exposure to moderate heat stress, but it is unclear whether these shifts represent acclimatization of individual colonies or mortality of thermally susceptible individuals. For corals that survive repeated bleaching events, it is important to understand how past bleaching responses impact future growth potential. Here, we track the bleaching responses of 1,832 corals in leeward Maui through multiple marine heatwaves and document patterns of coral growth and survivorship over a seven-year period. While we find limited evidence of acclimatization at population scales, we document reduced bleaching over time in specific individuals that is indicative of acclimatization, primarily in the stress-tolerant taxa Porites lobata. For corals that survived both bleaching events, we find no relationship between bleaching response and coral growth in three of four taxa studied. This decoupling suggests that coral survivorship is a better indicator of future growth than is a coral's bleaching history. Based on these results, we recommend restoration practitioners in Hawai'i focus on colonies of Porites and Montipora with a proven track-record of growth and survivorship, rather than devote resources toward identifying and cultivating bleaching-resistant phenotypes in the lab. Survivorship followed a latitudinal thermal stress gradient, but because this gradient was small, it is likely that local environmental factors also drove differences in coral performance between sites. Efforts to reduce human impacts at low performing sites would likely improve coral survivorship in the future.
Collapse
Affiliation(s)
- Orion S. McCarthy
- Scripps Institution of Oceanography, Center for Marine Biodiversity and Conservation, University of California San Diego, La Jolla, California, United States of America
| | - Morgan Winston Pomeroy
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona, United States of America
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, Hawai‘i, United States of America
| | - Jennifer E. Smith
- Scripps Institution of Oceanography, Center for Marine Biodiversity and Conservation, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
3
|
Smith KE, Aubin M, Burrows MT, Filbee-Dexter K, Hobday AJ, Holbrook NJ, King NG, Moore PJ, Sen Gupta A, Thomsen M, Wernberg T, Wilson E, Smale DA. Global impacts of marine heatwaves on coastal foundation species. Nat Commun 2024; 15:5052. [PMID: 38871692 DOI: 10.1038/s41467-024-49307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
With increasingly intense marine heatwaves affecting nearshore regions, foundation species are coming under increasing stress. To better understand their impacts, we examine responses of critical, habitat-forming foundation species (macroalgae, seagrass, corals) to marine heatwaves in 1322 shallow coastal areas located across 85 marine ecoregions. We find compelling evidence that intense, summer marine heatwaves play a significant role in the decline of foundation species globally. Critically, detrimental effects increase towards species warm-range edges and over time. We also identify several ecoregions where foundation species don't respond to marine heatwaves, suggestive of some resilience to warming events. Cumulative marine heatwave intensity, absolute temperature, and location within a species' range are key factors mediating impacts. Our results suggest many coastal ecosystems are losing foundation species, potentially impacting associated biodiversity, ecological function, and ecosystem services provision. Understanding relationships between marine heatwaves and foundation species offers the potential to predict impacts that are critical for developing management and adaptation approaches.
Collapse
Affiliation(s)
- Kathryn E Smith
- Marine Biological Association of the United Kingdom, Plymouth, UK.
| | - Margot Aubin
- Marine Biological Association of the United Kingdom, Plymouth, UK
| | | | - Karen Filbee-Dexter
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Institute of Marine Research, His, Bergen, Norway
| | | | - Neil J Holbrook
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, TAS, Australia
- Australian Research Council Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, 7001, TAS, Australia
| | - Nathan G King
- Marine Biological Association of the United Kingdom, Plymouth, UK
| | - Pippa J Moore
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Alex Sen Gupta
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Mads Thomsen
- The Marine Ecology Research Group, Centre of Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Aarhus University, Department of Ecoscience, 4000, Roskilde, Denmark
| | - Thomas Wernberg
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Institute of Marine Research, His, Bergen, Norway
| | - Edward Wilson
- Marine Biological Association of the United Kingdom, Plymouth, UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, Plymouth, UK
| |
Collapse
|
4
|
Cunning R, Lenz EA, Edmunds PJ. Measuring multi-year changes in the Symbiodiniaceae algae in Caribbean corals on coral-depleted reefs. PeerJ 2024; 12:e17358. [PMID: 38827291 PMCID: PMC11141555 DOI: 10.7717/peerj.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.
Collapse
Affiliation(s)
- Ross Cunning
- Conservation Research Department, John G. Shedd Aquarium, Chicago, Illinois, United States
| | - Elizabeth A. Lenz
- University of Hawai‘i Sea Grant College Program, University of Hawai‘i at Mānoa, Honolulu, Hawaii, United States
| | - Peter J. Edmunds
- Department of Biology, California State University, Northridge, Northridge, California, United States
| |
Collapse
|
5
|
Lange ID, Razak TB, Perry CT, Maulana PB, Prasetya ME, Irwan, Lamont TA. Coral restoration can drive rapid reef carbonate budget recovery. Curr Biol 2024; 34:1341-1348.e3. [PMID: 38460511 DOI: 10.1016/j.cub.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Restoration is increasingly seen as a necessary tool to reverse ecological decline across terrestrial and marine ecosystems.1,2 Considering the unprecedented loss of coral cover and associated reef ecosystem services, active coral restoration is gaining traction in local management strategies and has recently seen major increases in scale. However, the extent to which coral restoration may restore key reef functions is poorly understood.3,4 Carbonate budgets, defined as the balance between calcium carbonate production and erosion, influence a reef's ability to provide important geo-ecological functions including structural complexity, reef framework production, and vertical accretion.5 Here we present the first assessment of reef carbonate budget trajectories at restoration sites. The study was conducted at one of the world's largest coral restoration programs, which transplants healthy coral fragments onto hexagonal metal frames to consolidate degraded rubble fields.6 Within 4 years, fast coral growth supports a rapid recovery of coral cover (from 17% ± 2% to 56% ± 4%), substrate rugosity (from 1.3 ± 0.1 to 1.7 ± 0.1) and carbonate production (from 7.2 ± 1.6 to 20.7 ± 2.2 kg m-2 yr-1). Four years after coral transplantation, net carbonate budgets have tripled and are indistinguishable from healthy control sites (19.1 ± 3.1 and 18.7 ± 2.2 kg m-2 yr-1, respectively). However, taxa-level contributions to carbonate production differ between restored and healthy reefs due to the preferential use of branching corals for transplantation. While longer observation times are necessary to observe any self-organization ability of restored reefs (natural recruitment, resilience to thermal stress), we demonstrate the potential of large-scale, well-managed coral restoration projects to recover important ecosystem functions within only 4 years.
Collapse
Affiliation(s)
- Ines D Lange
- Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4RJ, UK.
| | - Tries B Razak
- Research Centre for Oceanography, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia; School of Coral Reef Restoration (SCORES), Faculty of Fisheries and Marine Science, IPB University, Bogor 16680, Indonesia
| | - Chris T Perry
- Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4RJ, UK
| | | | | | - Irwan
- Mars Sustainable Solutions, Makassar 90224, Indonesia
| | - Timothy Ac Lamont
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW, UK
| |
Collapse
|
6
|
Zhou Y, Li Q, Zhang Q, Yuan M, Zhu X, Li Y, Li Q, Downs CA, Huang D, Chou LM, Zhao H. Environmental Concentrations of Herbicide Prometryn Render Stress-Tolerant Corals Susceptible to Ocean Warming. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4545-4557. [PMID: 38386019 DOI: 10.1021/acs.est.3c10417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Global warming has caused the degradation of coral reefs around the world. While stress-tolerant corals have demonstrated the ability to acclimatize to ocean warming, it remains unclear whether they can sustain their thermal resilience when superimposed with other coastal environmental stressors. We report the combined impacts of a photosystem II (PSII) herbicide, prometryn, and ocean warming on the stress-tolerant coral Galaxea fascicularis through physiological and omics analyses. The results demonstrate that the heat-stress-induced inhibition of photosynthetic efficiency in G. fascicularis is exacerbated in the presence of prometryn. Transcriptomics and metabolomics analyses indicate that the prometryn exposure may overwhelm the photosystem repair mechanism in stress-tolerant corals, thereby compromising their capacity for thermal acclimation. Moreover, prometryn might amplify the adverse effects of heat stress on key energy and nutrient metabolism pathways and induce a stronger response to oxidative stress in stress-tolerant corals. The findings indicate that the presence of prometryn at environmentally relevant concentrations would render corals more susceptible to heat stress and exacerbate the breakdown of coral Symbiodiniaceae symbiosis. The present study provides valuable insights into the necessity of prioritizing PSII herbicide pollution reduction in coral reef protection efforts while mitigating the effects of climate change.
Collapse
Affiliation(s)
- Yanyu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Qiuli Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Meile Yuan
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Xiaoshan Zhu
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Qipei Li
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Craig A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, Virginia 24533, United States
| | - Danwei Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Loke-Ming Chou
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| |
Collapse
|