1
|
Ding N, Xu W, Liu H, Jing Y, Wang Z, Ji Y, Wu J, Shao L, Zhu G, Dong B. Highly DUV to NIR-II responsive broadband quantum dots heterojunction photodetectors by integrating quantum cutting luminescent concentrators. LIGHT, SCIENCE & APPLICATIONS 2024; 13:289. [PMID: 39402037 PMCID: PMC11473808 DOI: 10.1038/s41377-024-01604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 10/17/2024]
Abstract
Low-cost, high-performance, and uncooled broadband photodetectors (PDs) have potential applications in optical communication etc., but it still remains a huge challenge to realize deep UV (DUV) to the second near-infrared (NIR-II) detection for a single broadband PD. Herein, a single PD affording broadband spectral response from 200 to 1700 nm is achieved with a vertical configuration based on quantum dots (QDs) heterojunction and quantum cutting luminescent concentrators (QC-LC). A broadband quantum dots heterojunction as absorption layer was designed by integrating CsPbI3:Ho3+ perovskite quantum dots (PQDs) and PbS QDs to realize the spectral response from 400 to 1700 nm. The QC-LC by employing CsPbCl3:Cr3+, Ce3+, Yb3+, Er3+ PQDs as luminescent conversion layer to collect and concentrate photon energy for boosting the DUV-UV (200-400 nm) photons response of PDs by waveguide effect. Such broadband PD displays good stability, and outstanding sensitivity with the detectivity of 3.19 × 1012 Jones at 260 nm, 1.05 × 1013 Jones at 460 nm and 2.23 × 1012 Jones at 1550 nm, respectively. The findings provide a new strategy to construct broadband detector, offering more opportunities in future optoelectronic devices.
Collapse
Affiliation(s)
- Nan Ding
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, China.
| | - Hailong Liu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, China
| | - Yuhan Jing
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, China
| | - Zewen Wang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, China
| | - Yanan Ji
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, China
| | - Jinlei Wu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, China
| | - Long Shao
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, China
| | - Ge Zhu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, China.
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, China.
| |
Collapse
|
2
|
Ou X, Hong Z, Wu Q, Chen X, Xie L, Zhang Z, He Y, Chen Q, Yang H. Micro/Nano Engineering Advances Next-Generation Flexible X-ray Detectors. ACS NANO 2024; 18:27126-27137. [PMID: 39312719 DOI: 10.1021/acsnano.4c09554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The growing demands for X-ray imaging applications impose diverse and stringent requirements on advanced X-ray detectors. Among these, flexibility stands out as the most expected characteristic for next-generation X-ray detectors. Flexible X-ray detectors can spatially conform to nonflat surfaces, substantially improving the imaging resolution, reducing the X-ray exposure dosage, and enabling extended application opportunities that are hardly achievable by conventional rigid flat-panel detectors. Over the past years, indirect- and direct-conversion flexible X-ray detectors have made marvelous achievements. In particular, microscale and nanoscale engineering technologies play a pivotal role in defining the optical, electrical, and mechanical properties of flexible X-ray detectors. In this Perspective, we spotlight recent landmark advancements in flexible X-ray detectors from the aspects of micro/nano engineering strategies, which are broadly categorized into two prevailing modalities: materials-in-substrate and materials-on-substrate. We also discuss existing challenges hindering the development of flexible X-ray detectors, as well as prospective research opportunities to mitigate these issues.
Collapse
Affiliation(s)
- Xiangyu Ou
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Zhongzhu Hong
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
| | - Qinxia Wu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
| | - Xiaofeng Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
| | - Lili Xie
- School of Public Health, Fujian Medical University, Fuzhou 350108, P. R. China
| | - Zhenzhen Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
| | - Yu He
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
| | - Qiushui Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology & State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
3
|
Hou X, Liu Y, Bai S, Yu S, Huang H, Yang K, Li C, Peng Z, Zhao X, Zhou X, Xu G, Long S. Pyroelectric Photoconductive Diode for Highly Sensitive and Fast DUV Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314249. [PMID: 38564779 DOI: 10.1002/adma.202314249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Detecting high-energy photons from the deep ultraviolet (DUV) to X-rays is vital in security, medicine, industry, and science. Wide bandgap (WBG) semiconductors exhibit great potential for detecting high-energy photons. However, the implementation of highly sensitive and high-speed detectors based on WBG semiconductors has been a huge challenge due to the inevitable deep level traps and the lack of appropriate device structure engineering. Here, a sensitive and fast pyroelectric photoconductive diode (PPD), which couples the interface pyroelectric effect with the photoconductive effect based on tailored polycrystal Ga-rich GaOx (PGR-GaOx) Schottky photodiode, is first proposed. The PPD device exhibits ultrahigh detection performance for DUV and X-ray light. The responsivity for DUV light and sensitivity for X-ray are up to 104 A W-1 and 105 µC Gyair -1 cm-2, respectively. Especially, the interface pyroelectric effect induced by polar symmetry in the depletion region of the PGR-GaOx can significantly improve the response speed of the device by 105 times. Furthermore, the potential of the device is demonstrated for imaging enhancement systems with low power consumption and high sensitivity. This work fully excavates the potential of the pyroelectric effect for detectors and provides a novel design strategy to achieve sensitive and high-speed detectors.
Collapse
Affiliation(s)
- Xiaohu Hou
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Liu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shiyu Bai
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shunjie Yu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Huang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Kai Yang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Li
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhixin Peng
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zhao
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xuanze Zhou
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Guangwei Xu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shibing Long
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
He Y, Hu Y, Peng M, Fu L, Gao E, Liu Z, Dong C, Li S, Ge C, Yuan C, Bao X, Li K, Chen C, Tang J. One-Dimensional Crystal-Structure Te-Se Alloy for Flexible Shortwave Infrared Photodetector and Imaging. NANO LETTERS 2024; 24:5774-5782. [PMID: 38709116 DOI: 10.1021/acs.nanolett.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Flexible shortwave infrared detectors play a crucial role in wearable devices, bioimaging, automatic control, etc. Commercial shortwave infrared detectors face challenges in achieving flexibility due to the high fabrication temperature and rigid material properties. Herein, we develop a high-performance flexible Te0.7Se0.3 photodetector, resulting from the unique 1D crystal structure and small elastic modulus of Te-Se alloying. The flexible photodetector exhibits a broad-spectrum response ranging from 365 to 1650 nm, a fast response time of 6 μs, a broad linear dynamic range of 76 dB, and a specific detectivity of 4.8 × 1010 Jones at room temperature. The responsivity of the flexible detector remains at 93% of its initial value after bending with a small curvature of 3 mm. Based on the optimized flexible detector, we demonstrate its application in shortwave infrared imaging. These results showcase the great potential of Te0.7Se0.3 photodetectors for flexible electronics.
Collapse
Affiliation(s)
- Yuming He
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuxuan Hu
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Meng Peng
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liuchong Fu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ertan Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zunyu Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chong Dong
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sen Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ciyu Ge
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Can Yuan
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoqing Bao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Kanghua Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chao Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
5
|
Si M, Jee S, Yang M, Kim D, Ahn Y, Lee S, Kim C, Bae I, Baek S. Colloidal InAs Quantum Dot-Based Infrared Optoelectronics Enabled by Universal Dual-Ligand Passivation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306798. [PMID: 38240455 PMCID: PMC10987160 DOI: 10.1002/advs.202306798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/06/2024] [Indexed: 04/04/2024]
Abstract
Solution-processed low-bandgap semiconductors are crucial to next-generation infrared (IR) detection for various applications, such as autonomous driving, virtual reality, recognitions, and quantum communications. In particular, III-V group colloidal quantum dots (CQDs) are interesting as nontoxic bandgap-tunable materials and suitable for IR absorbers; however, the device performance is still lower than that of Pb-based devices. Herein, a universal surface-passivation method of InAs CQDs enabled by intermediate phase transfer (IPT), a preliminary process that exchanges native ligands with aromatic ligands on the CQD surface is presented. IPT yields highly stable CQD ink. In particular, desirable surface ligands with various reactivities can be obtained by dispersing them in green solvents. Furthermore, CQD near-infrared (NIR) photodetectors are demonstrated using solution processes. Careful surface ligand control via IPT is revealed that enables the modulation of surface-mediated photomultiplication, resulting in a notable gain control up to ≈10 with a fast rise/fall response time (≈12/36 ns). Considering the figure of merit (FOM), EQE versus response time (or -3 dB bandwidth), the optimal CQD photodiode yields one of the highest FOMs among all previously reported solution-processed nontoxic semiconductors comprising organics, perovskites, and CQDs in the NIR wavelength range.
Collapse
Affiliation(s)
- Min‐Jae Si
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Seungin Jee
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Minjung Yang
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Dongeon Kim
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Yongnam Ahn
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Seungjin Lee
- Department of Energy EngineeringKorea Institute of Energy Technology (KENTECH)Naju58330Republic of Korea
| | - Changjo Kim
- Nanotechnology and Advanced Spectroscopy Team, C‐PCS, Chemistry DivisionLos Alamos National LaboratoryLos AlamosNMUSA
| | - In‐Ho Bae
- Division of Physical MetrologyKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
| | - Se‐Woong Baek
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
6
|
Meng L, Xu Q, Zhang J, Wang X. Colloidal quantum dot materials for next-generation near-infrared optoelectronics. Chem Commun (Camb) 2024; 60:1072-1088. [PMID: 38174780 DOI: 10.1039/d3cc04315k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Colloidal quantum dots (CQDs) are a promising class of materials for next-generation optoelectronic devices, such as displays, LEDs, lasers, photodetectors, and solar cells. CQDs can be obtained at low cost and in large quantities using wet chemistry. CQDs have also been produced using various materials, such as CdSe, InP, perovskites, PbS, PbSe, and InAs. Some of these CQD materials absorb and emit photons in the visible region, making them excellent candidates for displays and LEDs, while others interact with low-energy photons in the near-infrared (NIR) region and are intensively utilized in NIR lasers, NIR photodetectors, and solar cells. In this review, we have focused on NIR CQD materials and reviewed the development of CQD materials for solar cells, NIR lasers, and NIR photodetectors since the first set of reports on CQD materials in these particular applications.
Collapse
Affiliation(s)
- Lingju Meng
- Department of Applied Physics, Aalto University, Espoo, Finland
- Department of Chemistry and Materials Science, Micronova Nanofabrication Centre, Aalto University, Espoo, Finland
| | - Qiwei Xu
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| | - Jiangwen Zhang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| | - Xihua Wang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|