1
|
Changiarath A, Arya A, Xenidis VA, Padeken J, Stelzl LS. Sequence determinants of protein phase separation and recognition by protein phase-separated condensates through molecular dynamics and active learning. Faraday Discuss 2025; 256:235-254. [PMID: 39319382 DOI: 10.1039/d4fd00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Elucidating how protein sequence determines the properties of disordered proteins and their phase-separated condensates is a great challenge in computational chemistry, biology, and biophysics. Quantitative molecular dynamics simulations and derived free energy values can in principle capture how a sequence encodes the chemical and biological properties of a protein. These calculations are, however, computationally demanding, even after reducing the representation by coarse-graining; exploring the large spaces of potentially relevant sequences remains a formidable task. We employ an "active learning" scheme introduced by Yang et al. (bioRxiv, 2022, https://doi.org/10.1101/2022.08.05.502972) to reduce the number of labelled examples needed from simulations, where a neural network-based model suggests the most useful examples for the next training cycle. Applying this Bayesian optimisation framework, we determine properties of protein sequences with coarse-grained molecular dynamics, which enables the network to establish sequence-property relationships for disordered proteins and their self-interactions and their interactions in phase-separated condensates. We show how iterative training with second virial coefficients derived from the simulations of disordered protein sequences leads to a rapid improvement in predicting peptide self-interactions. We employ this Bayesian approach to efficiently search for new sequences that bind to condensates of the disordered C-terminal domain (CTD) of RNA Polymerase II, by simulating molecular recognition of peptides to phase-separated condensates in coarse-grained molecular dynamics. By searching for protein sequences which prefer to self-interact rather than interact with another protein sequence we are able to shape the morphology of protein condensates and design multiphasic protein condensates.
Collapse
Affiliation(s)
- Arya Changiarath
- Institute of Physics, Johannes Gutenberg University (JGU) Mainz, Germany
| | - Aayush Arya
- Institute of Physics, Johannes Gutenberg University (JGU) Mainz, Germany
| | | | - Jan Padeken
- Institute of Molecular Biology (IMB) Mainz, Germany
| | - Lukas S Stelzl
- Institute of Molecular Biology (IMB) Mainz, Germany
- Institute of Molecular Physiology, Johannes Gutenberg University (JGU) Mainz, Germany.
- KOMET1, Institute of Physics, Johannes Gutenberg University (JGU) Mainz, Germany
| |
Collapse
|
2
|
Wu T, Chen X, Fei Y, Huang G, Deng Y, Wang Y, Yang A, Chen Z, Lemcoff NG, Feng X, Bai Y. Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis. Nat Chem Biol 2025:10.1038/s41589-024-01819-7. [PMID: 39779903 DOI: 10.1038/s41589-024-01819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein. The approach allows for high ArM loading and stabilization by localizing the ArMs within the phase-separated regions. Consequently, the performance of ArM-based whole-cell catalysts is improved, with a demonstrated turnover per cell of up to 7.1 × 109 for the olefin metathesis reaction. Furthermore, we apply this to an engineered E. coli system in live mice, where host bacterial cells confine the metal catalytic species, and in a mouse colorectal cancer model, where ArM-containing whole-cell catalysts mediate concurrent reactions to activate prodrugs.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xianhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yating Fei
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Guopu Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yingjiao Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yingjie Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anming Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - N Gabriel Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
3
|
Garcia-Cabau C, Bartomeu A, Tesei G, Cheung KC, Pose-Utrilla J, Picó S, Balaceanu A, Duran-Arqué B, Fernández-Alfara M, Martín J, De Pace C, Ruiz-Pérez L, García J, Battaglia G, Lucas JJ, Hervás R, Lindorff-Larsen K, Méndez R, Salvatella X. Mis-splicing of a neuronal microexon promotes CPEB4 aggregation in ASD. Nature 2025; 637:496-503. [PMID: 39633052 PMCID: PMC11711090 DOI: 10.1038/s41586-024-08289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
The inclusion of microexons by alternative splicing occurs frequently in neuronal proteins. The roles of these sequences are largely unknown, and changes in their degree of inclusion are associated with neurodevelopmental disorders1. We have previously shown that decreased inclusion of a 24-nucleotide neuron-specific microexon in CPEB4, a RNA-binding protein that regulates translation through cytoplasmic changes in poly(A) tail length, is linked to idiopathic autism spectrum disorder (ASD)2. Why this microexon is required and how small changes in its degree of inclusion have a dominant-negative effect on the expression of ASD-linked genes is unclear. Here we show that neuronal CPEB4 forms condensates that dissolve after depolarization, a transition associated with a switch from translational repression to activation. Heterotypic interactions between the microexon and a cluster of histidine residues prevent the irreversible aggregation of CPEB4 by competing with homotypic interactions between histidine clusters. We conclude that the microexon is required in neuronal CPEB4 to preserve the reversible regulation of CPEB4-mediated gene expression in response to neuronal stimulation.
Collapse
Affiliation(s)
- Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Bartomeu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kai Chit Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Julia Pose-Utrilla
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Picó
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreea Balaceanu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Berta Duran-Arqué
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marcos Fernández-Alfara
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Judit Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cesare De Pace
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giuseppe Battaglia
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - José J Lucas
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Hervás
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
4
|
Bergsma T, Steen A, Kamenz JL, Otto T, Gallardo P, Veenhoff LM. Imaging-Based Quantitative Assessment of Biomolecular Condensates in vitro and in Cells. J Biol Chem 2024:108130. [PMID: 39725032 DOI: 10.1016/j.jbc.2024.108130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
The formation of biomolecular condensates contributes to intracellular compartmentalization, and plays an important role in many cellular processes. The characterization of condensates is however challenging, requiring advanced biophysical or biochemical methods that are often less suitable for in vivo studies. A particular need for easily accessible yet thorough methods that enable the characterization of condensates across different experimental systems thus remains. To address this, we present PhaseMetrics, a semi-automated FIJI-based image analysis pipeline tailored for quantifying particle properties from microscopy data. Tested using the FG-domain of yeast nucleoporin Nup100, PhaseMetrics accurately assesses particle properties across diverse experimental setups, including particles formed in vitro in chemically defined buffers or in Xenopus egg extracts, and in cellular systems. Comparing the results with biochemical assays, we conclude that PhaseMetrics reliably detects changes induced by various conditions, including the presence of polyethylene glycol, 1,6-hexanediol, or a salt gradient, as well as the activity of the molecular chaperone DNAJB6b and the protein disaggregase Hsp104. Given the flexibility in its analysis parameters, the pipeline should also be applicable to other condensate-forming systems and we show it application for detecting TDP-43 particles. By enabling the accurate representation of the variability within the population and the detection of subtle changes at the single-condensate level, the method complements conventional biochemical assays. Combined, PhaseMetrics is an easily accessible, customizable pipeline that enables imaging-based quantitative assessment of biomolecular condensates in vitro and in cells, providing a valuable addition to the current toolbox.
Collapse
Affiliation(s)
- Tessa Bergsma
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Julia L Kamenz
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Tegan Otto
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paola Gallardo
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
King MR, Ruff KM, Pappu RV. Emergent microenvironments of nucleoli. Nucleus 2024; 15:2319957. [PMID: 38443761 PMCID: PMC10936679 DOI: 10.1080/19491034.2024.2319957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.
Collapse
Affiliation(s)
- Matthew R. King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| |
Collapse
|
6
|
Aierken D, Joseph JA. Accelerated Simulations Reveal Physicochemical Factors Governing Stability and Composition of RNA Clusters. J Chem Theory Comput 2024; 20:10209-10222. [PMID: 39505326 PMCID: PMC11603615 DOI: 10.1021/acs.jctc.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Under certain conditions, RNA repeat sequences phase separate, yielding protein-free biomolecular condensates. Importantly, RNA repeat sequences have also been implicated in neurological disorders, such as Huntington's disease. Thus, mapping repeat sequences to their phase behavior, functions, and dysfunctions is an active area of research. However, despite several advances, it remains challenging to characterize the RNA phase behavior at a submolecular resolution. Here, we have implemented a residue-resolution coarse-grained model in LAMMPS─that incorporates both the RNA sequence and structure─to study the clustering propensities of protein-free RNA systems. Importantly, we achieve a multifold speedup in the simulation time compared to previous work. Leveraging this efficiency, we study the clustering propensity of all 20 nonredundant trinucleotide repeat sequences. Our results align with findings from experiments, emphasizing that canonical base-pairing and G-U wobble pairs play dominant roles in regulating cluster formation of RNA repeat sequences. Strikingly, we find strong entropic contributions to the stability and composition of RNA clusters, which is demonstrated for single-component RNA systems as well as binary mixtures of trinucleotide repeats. Additionally, we investigate the clustering behaviors of trinucleotide (odd) repeats and their quadranucleotide (even) counterparts. We observe that odd repeats exhibit stronger clustering tendencies, attributed to the presence of consecutive base pairs in their sequences that are disrupted in even repeat sequences. Altogether, our work extends the set of computational tools for probing RNA cluster formation at submolecular resolution and uncovers physicochemical principles that govern the stability and composition of the resulting clusters.
Collapse
Affiliation(s)
- Dilimulati Aierken
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn−Darling
Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Jerelle A. Joseph
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn−Darling
Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
MacAinsh M, Dey S, Zhou HX. Direct and indirect salt effects on homotypic phase separation. eLife 2024; 13:RP100282. [PMID: 39531035 PMCID: PMC11556789 DOI: 10.7554/elife.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The low-complexity domain of hnRNPA1 (A1-LCD) phase separates in a salt-dependent manner. Unlike many intrinsically disordered proteins (IDPs) whose phase separation is suppressed by increasing salt concentrations, the phase separation of A1-LCD is promoted by >100 mM NaCl. To investigate the atypical salt effect on A1-LCD phase separation, we carried out all-atom molecular dynamics simulations of systems comprising multiple A1-LCD chains at NaCl concentrations from 50 to 1000 mM NaCl. The ions occupy first shell as well as more distant sites around the IDP chains, with Arg sidechains and backbone carbonyls the favored partners of Cl- and Na+, respectively. They play two direct roles in driving A1-LCD condensation. The first is to neutralize the high net charge of the protein (+9) by an excess of bound Cl- over Na+; the second is to bridge between A1-LCD chains, thereby fortifying the intermolecular interaction networks in the dense phase. At high concentrations, NaCl also indirectly strengthens π-π, cation-π, and amino-π interactions, by drawing water away from the interaction partners. Therefore, at low salt, A1-LCD is prevented from phase separation by net charge repulsion; at intermediate concentrations, NaCl neutralizes enough of the net charge while also bridging IDP chains to drive phase separation. This drive becomes even stronger at high salt due to strengthened π-type interactions. Based on this understanding, four classes of salt dependence of IDP phase separation can be predicted from amino-acid composition.
Collapse
Affiliation(s)
- Matt MacAinsh
- Department of Chemistry, University of Illinois ChicagoChicagoUnited States
| | - Souvik Dey
- Department of Chemistry, University of Illinois ChicagoChicagoUnited States
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois ChicagoChicagoUnited States
- Department of Physics, University of Illinois ChicagoChicagoUnited States
| |
Collapse
|
8
|
Zhang Y, Prasad R, Su S, Lee D, Zhou HX. Amino acid-dependent phase equilibrium and material properties of tetrapeptide condensates. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102218. [PMID: 39513041 PMCID: PMC11542723 DOI: 10.1016/j.xcrp.2024.102218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The rules of how amino acids dictate the physical properties of biomolecular condensates are still incomplete. Here, we study condensates formed by tetrapeptides of the form XXssXX. Eight peptides form four types of condensates at different concentrations and pHs: droplets (X = F, L, M, P, V, and A), amorphous dense liquids (X = L, M, P, V, and A), amorphous aggregates (X = W), and gels (X = I, V, and A). The peptides exhibit differences in phase equilibrium and material properties, including a 368-fold range in the threshold concentration for phase separation and a 3,856-fold range in viscosity. All-atom molecular dynamics simulations provide physical explanations of these results. The present work also reveals widespread critical behaviors-including critical slowing down manifested by amorphous dense liquids and critical scaling obeyed by fusion speed-with broad implications for condensate functions.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Siyuan Su
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA
- Lead contact
| |
Collapse
|
9
|
Fernandopulle MS, Ward ME. Hybrid protein filaments are a surprise twist in neurodegeneration. Nature 2024; 634:550-551. [PMID: 39358638 DOI: 10.1038/d41586-024-03054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
10
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis and maintain translational repression of maternal mRNA and oocyte quality. Mol Biol Cell 2024; 35:ar131. [PMID: 39167497 PMCID: PMC11481691 DOI: 10.1091/mbc.e24-05-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo Caenorhabditis elegans oogenesis model to characterize the properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and three other translational regulators. We demonstrate that MEX-3 undergoes phase separation and appears to have intrinsic gel-like properties in vitro. We also identify novel roles for the chaperonin-containing tailless complex polypeptide 1 (CCT) chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. The CCT chaperonin and actin also oppose the expansion of endoplasmic reticulum sheets that may promote ectopic condensation of RNA-binding proteins. These novel regulators of condensation are also required for the translational repression of maternal mRNA which is essential for oocyte quality and fertility. The identification of this regulatory network may also have implications for understanding the role of hMex3 phase transitions in cancer.
Collapse
Affiliation(s)
- Mohamed T. Elaswad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Mingze Gao
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Victoria E. Tice
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Cora G. Bright
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Grace M. Thomas
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Chloe Munderloh
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | | | - Christya N. Haddad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Ulysses G. Johnson
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859
| | - Ashley N. Cichon
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Jennifer A. Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| |
Collapse
|
11
|
Wu P, Li Y. Prion-like Proteins in Plants: Key Regulators of Development and Environmental Adaptation via Phase Separation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2666. [PMID: 39339640 PMCID: PMC11435361 DOI: 10.3390/plants13182666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Prion-like domains (PrLDs), a unique type of low-complexity domain (LCD) or intrinsically disordered region (IDR), have been shown to mediate protein liquid-liquid phase separation (LLPS). Recent research has increasingly focused on how prion-like proteins (PrLPs) regulate plant growth, development, and stress responses. This review provides a comprehensive overview of plant PrLPs. We analyze the structural features of PrLPs and the mechanisms by which PrLPs undergo LLPS. Through gene ontology (GO) analysis, we highlight the diverse molecular functions of PrLPs and explore how PrLPs influence plant development and stress responses via phase separation. Finally, we address unresolved questions about PrLP regulatory mechanisms, offering prospects for future research.
Collapse
Affiliation(s)
- Peisong Wu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
| | - Yihao Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
- Center for Biological Science and Technology, Guangdong Zhuhai–Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
12
|
Cohen SR, Banerjee PR, Pappu RV. Direct computations of viscoelastic moduli of biomolecular condensates. J Chem Phys 2024; 161:095103. [PMID: 39225536 PMCID: PMC11374380 DOI: 10.1063/5.0223001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Biomolecular condensates are viscoelastic materials defined by time-dependent, sequence-specific complex shear moduli. Here, we show that viscoelastic moduli can be computed directly using a generalization of the Rouse model that leverages information regarding intra- and inter-chain contacts, which we extract from equilibrium configurations of lattice-based Metropolis Monte Carlo (MMC) simulations of phase separation. The key ingredient of the generalized Rouse model is a graph Laplacian that we compute from equilibrium MMC simulations. We compute two flavors of graph Laplacians, one based on a single-chain graph that accounts only for intra-chain contacts, and the other referred to as a collective graph that accounts for inter-chain interactions. Calculations based on the single-chain graph systematically overestimate the storage and loss moduli, whereas calculations based on the collective graph reproduce the measured moduli with greater fidelity. However, in the long time, low-frequency domain, a mixture of the two graphs proves to be most accurate. In line with the theory of Rouse and contrary to recent assertions, we find that a continuous distribution of relaxation times exists in condensates. The single crossover frequency between dominantly elastic vs dominantly viscous behaviors does not imply a single relaxation time. Instead, it is influenced by the totality of the relaxation modes. Hence, our analysis affirms that viscoelastic fluid-like condensates are best described as generalized Maxwell fluids. Finally, we show that the complex shear moduli can be used to solve an inverse problem to obtain the relaxation time spectra that underlie the dynamics within condensates. This is of practical importance given advancements in passive and active microrheology measurements of condensate viscoelasticity.
Collapse
Affiliation(s)
- Samuel R Cohen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Priya R Banerjee
- Department of Physics, The State University of New York at Buffalo, Buffalo, New York 14260, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
13
|
Alshareedah I, Borcherds WM, Cohen SR, Singh A, Posey AE, Farag M, Bremer A, Strout GW, Tomares DT, Pappu RV, Mittag T, Banerjee PR. Sequence-specific interactions determine viscoelasticity and aging dynamics of protein condensates. NATURE PHYSICS 2024; 20:1482-1491. [PMID: 39464253 PMCID: PMC11501078 DOI: 10.1038/s41567-024-02558-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/22/2024] [Indexed: 10/29/2024]
Abstract
Biomolecular condensates are viscoelastic materials. Here, we investigate the determinants of sequence-encoded and age-dependent viscoelasticity of condensates formed by the prion-like low-complexity domain of the protein hnRNP A1 and its designed variants. We find that the dominantly viscous forms of the condensates are metastable Maxwell fluids. A Rouse-Zimm model that accounts for the network-like organization of proteins within condensates reproduces the measured viscoelastic moduli. We show that the strengths of aromatic inter-sticker interactions determine sequence-specific amplitudes of elastic and viscous moduli, and the timescales over which elastic properties dominate. These condensates undergo physical ageing on sequence-specific timescales. This is driven by mutations to spacer residues that weaken the metastability of dominantly viscous phases. The ageing of condensates is accompanied by disorder-to-order transitions, leading to the formation of non-fibrillar, beta-sheet-containing, semi-crystalline, elastic, Kelvin-Voigt solids. Our results suggest that sequence grammars, which refer to amino acid identities of stickers versus spacers in prion-like low-complexity domains, have evolved to afford control over metastabilities of dominantly viscous fluid phases of condensates. This selection is likely to render barriers for conversion from metastable fluids to globally stable solids insurmountable on functionally relevant timescales.
Collapse
Affiliation(s)
- Ibraheem Alshareedah
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Wade M. Borcherds
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Samuel R. Cohen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anurag Singh
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Ammon E. Posey
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mina Farag
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anne Bremer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Gregory W. Strout
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dylan T. Tomares
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Priya R. Banerjee
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
14
|
Kharel P, Ivanov P. RNA G-quadruplexes and stress: emerging mechanisms and functions. Trends Cell Biol 2024; 34:771-784. [PMID: 38341346 DOI: 10.1016/j.tcb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
RNA G-quadruplexes (rG4s) are noncanonical secondary structures formed by guanine-rich sequences that are found in different regions of RNA molecules. These structures have been implicated in diverse biological processes, including translation, splicing, and RNA stability. Recent studies have suggested that rG4s play a role in the cellular response to stress. This review summarizes the current knowledge on rG4s under stress, focusing on their formation, regulation, and potential functions in stress response pathways. We discuss the molecular mechanisms that regulate the formation of rG4 under different stress conditions and the impact of these structures on RNA metabolism, gene expression, and cell survival. Finally, we highlight the potential therapeutic implications of targeting rG4s for the treatment of stress-related diseases through modulating cell survival.
Collapse
Affiliation(s)
- Prakash Kharel
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; HMS Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Netzer A, Baruch Leshem A, Veretnik S, Edelstein I, Lampel A. Regulation of Peptide Liquid-Liquid Phase Separation by Aromatic Amino Acid Composition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401665. [PMID: 38804888 DOI: 10.1002/smll.202401665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Membraneless organelles are cellular biomolecular condensates that are formed by liquid-liquid phase separation (LLPS) of proteins and nucleic acids. LLPS is driven by multiple weak attractive forces, including intermolecular interactions mediated by aromatic amino acids. Considering the contribution of π-electron bearing side chains to protein-RNA LLPS, systematically study sought to how the composition of aromatic amino acids affects the formation of heterotypic condensates and their physical properties. For this, a library of minimalistic peptide building blocks is designed containing varying number and compositions of aromatic amino acids. It is shown that the number of aromatics in the peptide sequence affect LLPS propensity, material properties and (bio)chemical stability of peptide/RNA heterotypic condensates. The findings shed light on the contribution of aromatics' composition to the formation of heterotypic condensates. These insights can be applied for regulation of condensate material properties and improvement of their (bio)chemical stability, for various biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Amit Netzer
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Avigail Baruch Leshem
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shirel Veretnik
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ilan Edelstein
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
16
|
Sternke‐Hoffmann R, Sun X, Menzel A, Pinto MDS, Venclovaite U, Wördehoff M, Hoyer W, Zheng W, Luo J. Phase Separation and Aggregation of α-Synuclein Diverge at Different Salt Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308279. [PMID: 38973194 PMCID: PMC11425899 DOI: 10.1002/advs.202308279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/27/2024] [Indexed: 07/09/2024]
Abstract
The coacervation of alpha-synuclein (αSyn) into cytotoxic oligomers and amyloid fibrils are considered pathological hallmarks of Parkinson's disease. While aggregation is central to amyloid diseases, liquid-liquid phase separation (LLPS) and its interplay with aggregation have gained increasing interest. Previous work shows that factors promoting or inhibiting aggregation have similar effects on LLPS. This study provides a detailed scanning of a wide range of parameters, including protein, salt and crowding concentrations at multiple pH values, revealing different salt dependencies of aggregation and LLPS. The influence of salt on aggregation under crowding conditions follows a non-monotonic pattern, showing increased effects at medium salt concentrations. This behavior can be elucidated through a combination of electrostatic screening and salting-out effects on the intramolecular interactions between the N-terminal and C-terminal regions of αSyn. By contrast, this study finds a monotonic salt dependence of LLPS due to intermolecular interactions. Furthermore, it observes time evolution of the two distinct assembly states, with macroscopic fibrillar-like bundles initially forming at medium salt concentration but subsequently converting into droplets after prolonged incubation. The droplet state is therefore capable of inhibiting aggregation or even dissolving aggregates through heterotypic interactions, thus preventing αSyn from its dynamically arrested state.
Collapse
Affiliation(s)
| | - Xun Sun
- Center for Life SciencesPaul Scherrer InstituteForschungsstrasse 111Villigen5232Switzerland
| | - Andreas Menzel
- Center for Photon SciencePaul Scherrer InstituteForschungsstrasse 111Villigen5232Switzerland
| | | | - Urte Venclovaite
- Center for Life SciencesPaul Scherrer InstituteForschungsstrasse 111Villigen5232Switzerland
| | - Michael Wördehoff
- Institut für Physikalische BiologieHeinrich‐Heine University Düsseldorf40225DüsseldorfGermany
| | - Wolfgang Hoyer
- Institut für Physikalische BiologieHeinrich‐Heine University Düsseldorf40225DüsseldorfGermany
| | - Wenwei Zheng
- College of Integrative Sciences and ArtsArizona State UniversityMesaAZ85212USA
| | - Jinghui Luo
- Center for Life SciencesPaul Scherrer InstituteForschungsstrasse 111Villigen5232Switzerland
| |
Collapse
|
17
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Regina Chua Avecilla A, Thomas J, Quiroz FG. Genetically-encoded phase separation sensors for intracellular probing of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610365. [PMID: 39257779 PMCID: PMC11383673 DOI: 10.1101/2024.08.29.610365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biomolecular condensates are dynamic membraneless compartments with enigmatic roles across intracellular phenomena. Intrinsically-disordered proteins (IDPs) often function as condensate scaffolds, fueled by their liquid-liquid phase separation (LLPS) dynamics. Intracellular probing of these condensates relies on live-cell imaging of IDP-scaffolds tagged with fluorescent proteins. Conformational heterogeneity in IDPs, however, renders them uniquely sensitive to molecular-level fusions, risking distortion of the native biophysical properties of IDP-scaffolds and their assemblies. Probing epidermal condensates in mouse skin, we recently introduced genetically encoded LLPS-sensors that circumvent the need for molecular-level tagging of skin IDPs. The concept of LLPS-sensors involves a shift in focus from subcellular tracking of IDP-scaffolds to higher-level observations that report on the assembly and liquid-dynamics of their condensates. Towards advancing the repertoire of intracellular LLPS-sensors, here we demonstrate biomolecular approaches for the evolution and tunability of epidermal LLPS-sensors and assess their impact in early and late stages of intracellular LLPS dynamics. Benchmarking against scaffold-bound fluorescent reporters, we found that tunable ultraweak scaffold-sensor interactions are key to the sensitive and innocuous probing of nascent and established biomolecular condensates. Our LLPS-sensitive tools pave the way for the high-fidelity intracellular probing of IDP-governed biomolecular condensates across biological systems.
Collapse
Affiliation(s)
- Alexa Regina Chua Avecilla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Jeremy Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Felipe Garcia Quiroz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Pal T, Wessén J, Das S, Chan HS. Differential Effects of Sequence-Local versus Nonlocal Charge Patterns on Phase Separation and Conformational Dimensions of Polyampholytes as Model Intrinsically Disordered Proteins. J Phys Chem Lett 2024; 15:8248-8256. [PMID: 39105804 DOI: 10.1021/acs.jpclett.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Conformational properties of intrinsically disordered proteins (IDPs) are governed by a sequence-ensemble relationship. To differentiate the impact of sequence-local versus sequence-nonlocal features of an IDP's charge pattern on its conformational dimensions and its phase-separation propensity, the charge "blockiness" κ and the nonlocality-weighted sequence charge decoration (SCD) parameters are compared for their correlations with isolated-chain radii of gyration (Rgs) and upper critical solution temperatures (UCSTs) of polyampholytes modeled by random phase approximation, field-theoretic simulation, and coarse-grained molecular dynamics. SCD is superior to κ in predicting Rg because SCD accounts for effects of contact order, i.e., nonlocality, on dimensions of isolated chains. In contrast, κ and SCD are comparably good, though nonideal, predictors of UCST because frequencies of interchain contacts in the multiple-chain condensed phase are less sensitive to sequence positions than frequencies of intrachain contacts of an isolated chain, as reflected by κ correlating better with condensed-phase interaction energy than SCD.
Collapse
Affiliation(s)
- Tanmoy Pal
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonas Wessén
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, Gandhi Institute of Technology and Management, Visakhapatnam, Andhra Pradesh 530045, India
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
20
|
Qian D, Ausserwoger H, Sneideris T, Farag M, Pappu RV, Knowles TPJ. Dominance analysis to assess solute contributions to multicomponent phase equilibria. Proc Natl Acad Sci U S A 2024; 121:e2407453121. [PMID: 39102550 PMCID: PMC11331137 DOI: 10.1073/pnas.2407453121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Phase separation in aqueous solutions of macromolecules underlies the generation of biomolecular condensates in cells. Condensates are membraneless bodies, representing dense, macromolecule-rich phases that coexist with the dilute, macromolecule-deficient phases. In cells, condensates comprise hundreds of different macromolecular and small molecule solutes. How do different solutes contribute to the driving forces for phase separation? To answer this question, we introduce a formalism we term energy dominance analysis. This approach rests on analysis of shapes of the dilute phase boundaries, slopes of tie lines, and changes to dilute phase concentrations in response to perturbations of concentrations of different solutes. The framework is based solely on conditions for phase equilibria in systems with arbitrary numbers of macromolecules and solution components. Its practical application relies on being able to measure dilute phase concentrations of the components of interest. The dominance framework is both theoretically facile and experimentally applicable. We present the formalism that underlies dominance analysis and establish its accuracy and flexibility by deploying it to analyze phase diagrams probed in simulations and in experiments.
Collapse
Affiliation(s)
- Daoyuan Qian
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Hannes Ausserwoger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Tomas Sneideris
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Mina Farag
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63130
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, CB3 0HECambridge, United Kingdom
| |
Collapse
|
21
|
Meyer K, Yserentant K, Cheloor-Kovilakam R, Ruff KM, Chung CI, Shu X, Huang B, Weiner OD. YAP charge patterning mediates signal integration through transcriptional co-condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607443. [PMID: 39149273 PMCID: PMC11326239 DOI: 10.1101/2024.08.10.607443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Transcription factor dynamics are used to selectively engage gene regulatory programs. Biomolecular condensates have emerged as an attractive signaling substrate in this process, but the underlying mechanisms are not well-understood. Here, we probed the molecular basis of YAP signal integration through transcriptional condensates. Leveraging light-sheet single-molecule imaging and synthetic condensates, we demonstrate charge-mediated co-condensation of the transcriptional regulators YAP and Mediator into transcriptionally active condensates in stem cells. IDR sequence analysis and YAP protein engineering demonstrate that instead of the net charge, YAP signaling specificity is established through its negative charge patterning that interacts with Mediator's positive charge blocks. The mutual enhancement of YAP/Mediator co-condensation is counteracted by negative feedback from transcription, driving an adaptive transcriptional response that is well-suited for decoding dynamic inputs. Our work reveals a molecular framework for YAP condensate formation and sheds new light on the function of YAP condensates for emergent gene regulatory behavior.
Collapse
Affiliation(s)
- Kirstin Meyer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Klaus Yserentant
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, 94143, CA, USA
| | - Rasmi Cheloor-Kovilakam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, 94143, CA, USA
| | - Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chan-I Chung
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, 94143, CA, USA
| | - Xiaokun Shu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, 94143, CA, USA
| | - Bo Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, 94158, CA, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, 94143, CA, USA
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
22
|
Guo X, Farag M, Qian N, Yu X, Ni A, Ma Y, Yu W, King MR, Liu V, Lee J, Zare RN, Min W, Pappu RV, Dai Y. Biomolecular condensates can function as inherent catalysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602359. [PMID: 39026887 PMCID: PMC11257451 DOI: 10.1101/2024.07.06.602359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We report the discovery that chemical reactions such as ATP hydrolysis can be catalyzed by condensates formed by intrinsically disordered proteins (IDPs), which themselves lack any intrinsic ability to function as enzymes. This inherent catalytic feature of condensates derives from the electrochemical environments and the electric fields at interfaces that are direct consequences of phase separation. The condensates we studied were capable of catalyzing diverse hydrolysis reactions, including hydrolysis and radical-dependent breakdown of ATP whereby ATP fully decomposes to adenine and multiple carbohydrates. This distinguishes condensates from naturally occurring ATPases, which can only catalyze the dephosphorylation of ATP. Interphase and interfacial properties of condensates can be tuned via sequence design, thus enabling control over catalysis through sequence-dependent electrochemical features of condensates. Incorporation of hydrolase-like synthetic condensates into live cells enables activation of transcriptional circuits that depend on products of hydrolysis reactions. Inherent catalytic functions of condensates, which are emergent consequences of phase separation, are likely to affect metabolic regulation in cells.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Xia Yu
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Anton Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Yuefeng Ma
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Wen Yu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Matthew R. King
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Vicky Liu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Joonho Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Yifan Dai
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
23
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis to maintain translational repression of maternal mRNA and oocyte quality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601596. [PMID: 39005301 PMCID: PMC11244991 DOI: 10.1101/2024.07.01.601596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo C. elegans oogenesis model to determine the intrinsic properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and the Lsm protein, CAR-1. We demonstrate that MEX-3 undergoes liquid-liquid phase separation and appears to have intrinsic gel-like properties in vitro . We also identify novel roles for the CCT chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. CCT and actin also oppose the expansion of ER sheets that may promote ectopic condensation of RNA-binding proteins that are associated with de-repression of maternal mRNA. This regulatory network is essential to preserve oocyte quality, prevent infertility, and may have implications for understanding the role of hMex3 phase transitions in cancer. Significance statement The molecular mechanisms that regulate phase transitions of oogenic RNA-binding proteins are critical to elucidate but are not fully understood.We identify novel regulators of RNA-binding protein phase transitions in maturing oocytes that are required to maintain translational repression of maternal mRNAs and oocyte quality.This study is the first to elucidate a regulatory network involving the CCT chaperonin, actin, and the ER for phase transitions of RNA-binding proteins during oogenesis. Our findings for the conserved MEX-3 protein may also be applicable to better understanding the role of hMex3 phase transitions in cancer.
Collapse
|
24
|
Sood A, Zhang B. Preserving condensate structure and composition by lowering sequence complexity. Biophys J 2024; 123:1815-1826. [PMID: 38824391 PMCID: PMC11267431 DOI: 10.1016/j.bpj.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
Biomolecular condensates play a vital role in organizing cellular chemistry. They selectively partition biomolecules, preventing unwanted cross talk and buffering against chemical noise. Intrinsically disordered proteins (IDPs) serve as primary components of these condensates due to their flexibility and ability to engage in multivalent interactions, leading to spontaneous aggregation. Theoretical advancements are critical at connecting IDP sequences with condensate emergent properties to establish the so-called molecular grammar. We proposed an extension to the stickers and spacers model, incorporating heterogeneous, nonspecific pairwise interactions between spacers alongside specific interactions among stickers. Our investigation revealed that although spacer interactions contribute to phase separation and co-condensation, their nonspecific nature leads to disorganized condensates. Specific sticker-sticker interactions drive the formation of condensates with well-defined networked structures and molecular composition. We discussed how evolutionary pressures might emerge to affect these interactions, leading to the prevalence of low-complexity domains in IDP sequences. These domains suppress spurious interactions and facilitate the formation of biologically meaningful condensates.
Collapse
Affiliation(s)
- Amogh Sood
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
25
|
Phillips M, Ghosh K. Rules of selective condensation in cells. Nat Chem 2024; 16:1042-1044. [PMID: 38760433 PMCID: PMC11230838 DOI: 10.1038/s41557-024-01525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Liquid droplets form in cells to concentrate specific biomolecules (while excluding others) in order to perform specific functions. The molecular mechanisms that determine whether different macromolecules undergo co-partitioning or exclusion has so far remained elusive. Now, two studies uncover key principles underlying this selectivity.
Collapse
Affiliation(s)
- Michael Phillips
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA.
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA.
| |
Collapse
|
26
|
Strom AR, Eeftens JM, Polyachenko Y, Weaver CJ, Watanabe HF, Bracha D, Orlovsky ND, Jumper CC, Jacobs WM, Brangwynne CP. Interplay of condensation and chromatin binding underlies BRD4 targeting. Mol Biol Cell 2024; 35:ar88. [PMID: 38656803 PMCID: PMC11238092 DOI: 10.1091/mbc.e24-01-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Nuclear compartments form via biomolecular phase separation, mediated through multivalent properties of biomolecules concentrated within condensates. Certain compartments are associated with specific chromatin regions, including transcriptional initiation condensates, which are composed of transcription factors and transcriptional machinery, and form at acetylated regions including enhancer and promoter loci. While protein self-interactions, especially within low-complexity and intrinsically disordered regions, are known to mediate condensation, the role of substrate-binding interactions in regulating the formation and function of biomolecular condensates is underexplored. Here, utilizing live-cell experiments in parallel with coarse-grained simulations, we investigate how chromatin interaction of the transcriptional activator BRD4 modulates its condensate formation. We find that both kinetic and thermodynamic properties of BRD4 condensation are affected by chromatin binding: nucleation rate is sensitive to BRD4-chromatin interactions, providing an explanation for the selective formation of BRD4 condensates at acetylated chromatin regions, and thermodynamically, multivalent acetylated chromatin sites provide a platform for BRD4 clustering below the concentration required for off-chromatin condensation. This provides a molecular and physical explanation of the relationship between nuclear condensates and epigenetically modified chromatin that results in their mutual spatiotemporal regulation, suggesting that epigenetic modulation is an important mechanism by which the cell targets transcriptional condensates to specific chromatin loci.
Collapse
Affiliation(s)
- Amy R. Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Jorine M. Eeftens
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Radboud Institute for Molecular Life Sciences, Radboud University, 6525 XZ Nijmegen, Netherlands
| | - Yury Polyachenko
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Claire J. Weaver
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Molecular and Cellular Biology, Princeton University, Princeton, NJ 08544
| | | | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Biotechnology and Food Engineering, Technion, Haifa 3200, Israel
| | - Natalia D. Orlovsky
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA 02115
| | - Chanelle C. Jumper
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Nereid Therapeutics, Boston, MA
| | | | - Clifford P. Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
27
|
Murai T. Transmembrane signaling through single-spanning receptors modulated by phase separation at the cell surface. Eur J Cell Biol 2024; 103:151413. [PMID: 38631097 DOI: 10.1016/j.ejcb.2024.151413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
A wide variety of transmembrane signals are transduced by cell-surface receptors that activate intracellular signaling molecules. In particular, receptor clustering in the plasma membrane plays a critical role in these processes. Single-spanning or single-pass transmembrane proteins are among the most significant types of membrane receptors, which include adhesion receptors, such as integrins, CD44, cadherins, and receptor tyrosine kinases. Elucidating the molecular mechanisms underlying the regulation of the activity of these receptors is of great significance. Liquid-liquid phase separation (LLPS) is a recently emerging paradigm in cellular physiology for the ubiquitous regulation of the spatiotemporal dynamics of various signaling pathways. This study describes the emerging features of transmembrane signaling through single-spanning receptors from the perspective of phase separation. Possible physicochemical modulations of LLPS-based transmembrane signaling are also discussed.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Kar M, Vogel LT, Chauhan G, Felekyan S, Ausserwöger H, Welsh TJ, Dar F, Kamath AR, Knowles TPJ, Hyman AA, Seidel CAM, Pappu RV. Solutes unmask differences in clustering versus phase separation of FET proteins. Nat Commun 2024; 15:4408. [PMID: 38782886 PMCID: PMC11116469 DOI: 10.1038/s41467-024-48775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Phase separation and percolation contribute to phase transitions of multivalent macromolecules. Contributions of percolation are evident through the viscoelasticity of condensates and through the formation of heterogeneous distributions of nano- and mesoscale pre-percolation clusters in sub-saturated solutions. Here, we show that clusters formed in sub-saturated solutions of FET (FUS-EWSR1-TAF15) proteins are affected differently by glutamate versus chloride. These differences on the nanoscale, gleaned using a suite of methods deployed across a wide range of protein concentrations, are prevalent and can be unmasked even though the driving forces for phase separation remain unchanged in glutamate versus chloride. Strikingly, differences in anion-mediated interactions that drive clustering saturate on the micron-scale. Beyond this length scale the system separates into coexisting phases. Overall, we find that sequence-encoded interactions, mediated by solution components, make synergistic and distinct contributions to the formation of pre-percolation clusters in sub-saturated solutions, and to the driving forces for phase separation.
Collapse
Affiliation(s)
- Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany
| | - Laura T Vogel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Gaurav Chauhan
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Suren Felekyan
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Hannes Ausserwöger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Timothy J Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anjana R Kamath
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Anthony A Hyman
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany.
| | - Claus A M Seidel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
29
|
Zhang Y, Prasad R, Su S, Lee D, Zhou HX. Amino Acid-Dependent Material Properties of Tetrapeptide Condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594233. [PMID: 38798623 PMCID: PMC11118382 DOI: 10.1101/2024.05.14.594233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Condensates formed by intrinsically disordered proteins mediate a myriad of cellular processes and are linked to pathological conditions including neurodegeneration. Rules of how different types of amino acids (e.g., π-π pairs) dictate the physical properties of biomolecular condensates are emerging, but our understanding of the roles of different amino acids is far from complete. Here we studied condensates formed by tetrapeptides of the form XXssXX, where X is an amino acid and ss represents a disulfide bond along the backbone. Eight peptides form four types of condensates at different concentrations and pH values: droplets (X = F, L, M, P, V, A); amorphous dense liquids (X = L, M, P, V, A); amorphous aggregates (X = W), and gels (X = I, V, A). The peptides exhibit enormous differences in phase equilibrium and material properties, including a 368-fold range in the threshold concentration for phase separation and a 3856-fold range in viscosity. All-atom molecular dynamics simulations provide physical explanations of these results. The present work also reveals widespread critical behaviors, including critical slowing down manifested by the formation of amorphous dense liquids and critical scaling obeyed by fusion speed, with broad implications for condensate function.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Siyuan Su
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago IL 60607, USA
| |
Collapse
|
30
|
Dar F, Cohen SR, Mitrea DM, Phillips AH, Nagy G, Leite WC, Stanley CB, Choi JM, Kriwacki RW, Pappu RV. Biomolecular condensates form spatially inhomogeneous network fluids. Nat Commun 2024; 15:3413. [PMID: 38649740 PMCID: PMC11035652 DOI: 10.1038/s41467-024-47602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.
Collapse
Affiliation(s)
- Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Samuel R Cohen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Diana M Mitrea
- Dewpoint Therapeutics Inc., 451 D Street, Boston, MA, 02210, USA
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington C Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Christopher B Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea.
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
31
|
Rana U, Wingreen NS, Brangwynne CP, Panagiotopoulos AZ. Interfacial exchange dynamics of biomolecular condensates are highly sensitive to client interactions. J Chem Phys 2024; 160:145102. [PMID: 38591689 PMCID: PMC11006425 DOI: 10.1063/5.0188461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Phase separation of biomolecules can facilitate their spatiotemporally regulated self-assembly within living cells. Due to the selective yet dynamic exchange of biomolecules across condensate interfaces, condensates can function as reactive hubs by concentrating enzymatic components for faster kinetics. The principles governing this dynamic exchange between condensate phases, however, are poorly understood. In this work, we systematically investigate the influence of client-sticker interactions on the exchange dynamics of protein molecules across condensate interfaces. We show that increasing affinity between a model protein scaffold and its client molecules causes the exchange of protein chains between the dilute and dense phases to slow down and that beyond a threshold interaction strength, this slowdown in exchange becomes substantial. Investigating the impact of interaction symmetry, we found that chain exchange dynamics are also considerably slower when client molecules interact equally with different sticky residues in the protein. The slowdown of exchange is due to a sequestration effect, by which there are fewer unbound stickers available at the interface to which dilute phase chains may attach. These findings highlight the fundamental connection between client-scaffold interaction networks and condensate exchange dynamics.
Collapse
Affiliation(s)
- Ushnish Rana
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
32
|
King MR, Ruff KM, Lin AZ, Pant A, Farag M, Lalmansingh JM, Wu T, Fossat MJ, Ouyang W, Lew MD, Lundberg E, Vahey MD, Pappu RV. Macromolecular condensation organizes nucleolar sub-phases to set up a pH gradient. Cell 2024; 187:1889-1906.e24. [PMID: 38503281 DOI: 10.1016/j.cell.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.
Collapse
Affiliation(s)
- Matthew R King
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Kiersten M Ruff
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Z Lin
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Avnika Pant
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Mina Farag
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jared M Lalmansingh
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tingting Wu
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Martin J Fossat
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Wei Ouyang
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Matthew D Lew
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Emma Lundberg
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Michael D Vahey
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
33
|
Qian D, Ausserwoger H, Sneideris T, Farag M, Pappu RV, Knowles TPJ. Dominance Analysis: A formalism to uncover dominant energetic contributions to biomolecular condensate formation in multicomponent systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.12.544666. [PMID: 38562796 PMCID: PMC10983860 DOI: 10.1101/2023.06.12.544666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Phase separation in aqueous solutions of macromolecules is thought to underlie the generation of biomolecular condensates in cells. Condensates are membraneless bodies, representing dense, macromolecule-rich phases that coexist with the dilute, macromolecule-deficient phase. In cells, condensates comprise hundreds of different macromolecular and small molecule solutes. Do all components contribute equally or very differently to the driving forces for phase separation? Currently, we lack a coherent formalism to answer this question, a gap we remedy in this work through the introduction of a formalism we term energy dominance analysis. This approach rests on model-free analysis of shapes of the dilute arms of phase boundaries, slopes of tie lines, and changes to dilute phase concentrations in response to perturbations of concentrations of different solutes. We present the formalism that underlies dominance analysis, and establish its accuracy and flexibility by deploying it to analyse phase spaces probed in silico, in vitro , and in cellulo .
Collapse
|
34
|
Das T, Zaidi F, Farag M, Ruff KM, Messing J, Taylor JP, Pappu RV, Mittag T. Metastable condensates suppress conversion to amyloid fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582569. [PMID: 38464104 PMCID: PMC10925303 DOI: 10.1101/2024.02.28.582569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Stress granules form via co-condensation of RNA binding proteins with prion-like low complexity domains (PLCDs) and RNA molecules released by stress-induced polysomal runoff. Homotypic interactions among PLCDs can drive amyloid fibril formation and this is enhanced by ALS-associated mutations. We find that homotypic interactions that drive condensation versus fibril formation are separable for A1-LCD, the PLCD of hnRNPA1. These separable interactions lead to condensates that are metastable versus fibrils that are globally stable. Metastable condensates suppress fibril formation, and ALS-associated mutations enhance fibril formation by weakening condensate metastability. Mutations designed to enhance A1-LCD condensate metastability restore wild-type behaviors of stress granules in cells even when ALS-associated mutations are present. This suggests that fibril formation can be suppressed by enhancing condensate metastability through condensate-driving interactions.
Collapse
Affiliation(s)
- Tapojyoti Das
- Department of Structural Biology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Fatima Zaidi
- Department of Structural Biology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Mina Farag
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis; St. Louis, MO 63130, USA
| | - Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis; St. Louis, MO 63130, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis; St. Louis, MO 63130, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| |
Collapse
|
35
|
Sternke-Hoffmann R, Sun X, Menzel A, Pinto MDS, Venclovaitė U, Wördehoff M, Hoyer W, Zheng W, Luo J. Phase Separation and Aggregation of α-Synuclein Diverge at Different Salt Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582895. [PMID: 38464093 PMCID: PMC10925286 DOI: 10.1101/2024.03.01.582895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The coacervation and structural rearrangement of the protein alpha-synuclein (αSyn) into cytotoxic oligomers and amyloid fibrils are considered pathological hallmarks of Parkinson's disease. While aggregation is recognized as the key element of amyloid diseases, liquid-liquid phase separation (LLPS) and its interplay with aggregation have gained increasing interest. Previous work showed that factors promoting or inhibiting amyloid formation have similar effects on phase separation. Here, we provide a detailed scanning of a wide range of parameters including protein, salt and crowding concentrations at multiple pH values, revealing different salt dependencies of aggregation and phase separation. The influence of salt on aggregation under crowded conditions follows a non-monotonic pattern, showing increased effects at medium salt concentrations. This behavior can be elucidated through a combination of electrostatic screening and salting-out effects on the intramolecular interactions between the N-terminal and C-terminal regions of αSyn. By contrast, we find a monotonic salt dependence of phase separation due to the intermolecular interaction. Furthermore, we observe the time evolution of the two distinct assembly states, with macroscopic fibrillar-like bundles initially forming at medium salt concentration but subsequently converting into droplets after prolonged incubation. The droplet state is therefore capable of inhibiting aggregation or even dissolving the aggregates through a variety of heterotypic interactions, thus preventing αSyn from its dynamically arrested state.
Collapse
Affiliation(s)
- Rebecca Sternke-Hoffmann
- Department of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Xun Sun
- Department of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Andreas Menzel
- Photon Science Division, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Miriam Dos Santos Pinto
- Department of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Urtė Venclovaitė
- Department of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Michael Wördehoff
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, 85212, United States
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
36
|
Li S, Zhang Y, Chen J. Backbone interactions and secondary structures in phase separation of disordered proteins. Biochem Soc Trans 2024; 52:319-329. [PMID: 38348795 PMCID: PMC11742187 DOI: 10.1042/bst20230618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
Intrinsically disordered proteins (IDPs) are one of the major drivers behind the formation and characteristics of biomolecular condensates. Due to their inherent flexibility, the backbones of IDPs are significantly exposed, rendering them highly influential and susceptible to biomolecular phase separation. In densely packed condensates, exposed backbones have a heightened capacity to interact with neighboring protein chains, which might lead to strong coupling between the secondary structures and phase separation and further modulate the subsequent transitions of the condensates, such as aging and fibrillization. In this mini-review, we provide an overview of backbone-mediated interactions and secondary structures within biomolecular condensates to underscore the importance of protein backbones in phase separation. We further focus on recent advances in experimental techniques and molecular dynamics simulation methods for probing and exploring the roles of backbone interactions and secondary structures in biomolecular phase separation involving IDPs.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
37
|
Dar F, Cohen SR, Mitrea DM, Phillips AH, Nagy G, Leite WC, Stanley CB, Choi JM, Kriwacki RW, Pappu RV. Biomolecular condensates form spatially inhomogeneous network fluids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.07.561338. [PMID: 37873180 PMCID: PMC10592670 DOI: 10.1101/2023.10.07.561338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.
Collapse
|
38
|
Davis RB, Supakar A, Ranganath AK, Moosa MM, Banerjee PR. Heterotypic interactions can drive selective co-condensation of prion-like low-complexity domains of FET proteins and mammalian SWI/SNF complex. Nat Commun 2024; 15:1168. [PMID: 38326345 PMCID: PMC10850361 DOI: 10.1038/s41467-024-44945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Prion-like domains (PLDs) are low-complexity protein sequences enriched within nucleic acid-binding proteins including those involved in transcription and RNA processing. PLDs of FUS and EWSR1 play key roles in recruiting chromatin remodeler mammalian SWI/SNF (mSWI/SNF) complex to oncogenic FET fusion protein condensates. Here, we show that disordered low-complexity domains of multiple SWI/SNF subunits are prion-like with a strong propensity to undergo intracellular phase separation. These PLDs engage in sequence-specific heterotypic interactions with the PLD of FUS in the dilute phase at sub-saturation conditions, leading to the formation of PLD co-condensates. In the dense phase, homotypic and heterotypic PLD interactions are highly cooperative, resulting in the co-mixing of individual PLD phases and forming spatially homogeneous condensates. Heterotypic PLD-mediated positive cooperativity in protein-protein interaction networks is likely to play key roles in the co-phase separation of mSWI/SNF complex with transcription factors containing homologous low-complexity domains.
Collapse
Affiliation(s)
- Richoo B Davis
- Department of Physics, University at Buffalo, Buffalo, NY, 14260, USA
| | - Anushka Supakar
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | | | | | - Priya R Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY, 14260, USA.
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
39
|
Zhang Y, Li S, Gong X, Chen J. Toward Accurate Simulation of Coupling between Protein Secondary Structure and Phase Separation. J Am Chem Soc 2024; 146:342-357. [PMID: 38112495 PMCID: PMC10842759 DOI: 10.1021/jacs.3c09195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) frequently mediate phase separation that underlies the formation of a biomolecular condensate. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding the sequence-specific phase separation of IDPs. However, the widely used Cα-only models are limited in capturing the peptide nature of IDPs, particularly backbone-mediated interactions and effects of secondary structures, in phase separation. Here, we describe a hybrid resolution (HyRes) protein model toward a more accurate description of the backbone and transient secondary structures in phase separation. With an atomistic backbone and coarse-grained side chains, HyRes can semiquantitatively capture the residue helical propensity and overall chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for the direct simulation of spontaneous phase separation and, at the same time, appears accurate enough to resolve the effects of single His to Lys mutations. HyRes simulations also successfully predict increased β-structure formation in the condensate, consistent with available experimental CD data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate the phase separation propensity as measured by the saturation concentration. The simulations successfully recapitulate the effect of these mutants on the helicity and phase separation propensity of TDP-43 CR. Analyses reveal that the balance between backbone and side chain-mediated interactions, but not helicity itself, actually determines phase separation propensity. These results support that HyRes represents an effective protein model for molecular simulation of IDP phase separation and will help to elucidate the coupling between transient secondary structures and phase separation.
Collapse
Affiliation(s)
| | | | - Xiping Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
40
|
Marshall AC, Cummins J, Kobelke S, Zhu T, Widagdo J, Anggono V, Hyman A, Fox AH, Bond CS, Lee M. Different Low-complexity Regions of SFPQ Play Distinct Roles in the Formation of Biomolecular Condensates. J Mol Biol 2023; 435:168364. [PMID: 37952770 DOI: 10.1016/j.jmb.2023.168364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Demixing of proteins and nucleic acids into condensed liquid phases is rapidly emerging as a ubiquitous mechanism underlying the complex spatiotemporal organisation of molecules within the cell. Long disordered regions of low sequence complexity (LCRs) are a common feature of proteins that form liquid-like microscopic biomolecular condensates. In particular, RNA-binding proteins with prion-like regions have emerged as key drivers of liquid demixing to form condensates such as nucleoli, paraspeckles and stress granules. Splicing factor proline- and glutamine-rich (SFPQ) is an RNA- and DNA-binding protein essential for DNA repair and paraspeckle formation. SFPQ contains two LCRs of different length and composition. Here, we show that the shorter C-terminal LCR of SFPQ is the main region responsible for the condensation of SFPQ in vitro and in the cell nucleus. In contrast, we find that the longer N-terminal prion-like LCR of SFPQ attenuates condensation of the full-length protein, suggesting a more regulatory role in preventing aberrant condensate formation in the cell. The compositions of these respective LCRs are discussed with reference to current literature. Our data add nuance to the emerging understanding of biomolecular condensation, by providing the first example of a common multifunctional nucleic acid-binding protein with an extensive prion-like region that serves to regulate rather than drive condensate formation.
Collapse
Affiliation(s)
- Andrew C Marshall
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jerry Cummins
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Simon Kobelke
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Tianyi Zhu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anthony Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Mihwa Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
41
|
Lin AZ, Ruff KM, Dar F, Jalihal A, King MR, Lalmansingh JM, Posey AE, Erkamp NA, Seim I, Gladfelter AS, Pappu RV. Dynamical control enables the formation of demixed biomolecular condensates. Nat Commun 2023; 14:7678. [PMID: 37996438 PMCID: PMC10667521 DOI: 10.1038/s41467-023-43489-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Cellular matter can be organized into compositionally distinct biomolecular condensates. For example, in Ashbya gossypii, the RNA-binding protein Whi3 forms distinct condensates with different RNA molecules. Using criteria derived from a physical framework for explaining how compositionally distinct condensates can form spontaneously via thermodynamic considerations, we find that condensates in vitro form mainly via heterotypic interactions in binary mixtures of Whi3 and RNA. However, within these condensates, RNA molecules become dynamically arrested. As a result, in ternary systems, simultaneous additions of Whi3 and pairs of distinct RNA molecules lead to well-mixed condensates, whereas delayed addition of an RNA component results in compositional distinctness. Therefore, compositional identities of condensates can be achieved via dynamical control, being driven, at least partially, by the dynamical arrest of RNA molecules. Finally, we show that synchronizing the production of different RNAs leads to more well-mixed, as opposed to compositionally distinct condensates in vivo.
Collapse
Affiliation(s)
- Andrew Z Lin
- Division of Biology and Biomedical Sciences, Plant and Microbial Biosciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ameya Jalihal
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Matthew R King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jared M Lalmansingh
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ammon E Posey
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nadia A Erkamp
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ian Seim
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA.
| | - Rohit V Pappu
- Division of Biology and Biomedical Sciences, Plant and Microbial Biosciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
42
|
Dar F, Cohen SR, Mitrea DM, Phillips AH, Nagy G, Leite WC, Stanley CB, Choi JM, Kriwacki RW, Pappu RV. Biomolecular condensates form spatially inhomogeneous network fluids. RESEARCH SQUARE 2023:rs.3.rs-3419423. [PMID: 37886520 PMCID: PMC10602126 DOI: 10.21203/rs.3.rs-3419423/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The functions of biomolecular condensates are thought to be influenced by their material properties, and these are in turn determined by the multiscale structural features within condensates. However, structural characterizations of condensates are challenging, and hence rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and bespoke coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that mimic nucleolar granular components (GCs). We show that facsimiles of GCs are network fluids featuring spatial inhomogeneities across hierarchies of length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights, extracted from a combination of approaches, suggest that condensates formed by multivalent proteins share features with network fluids formed by associative systems such as patchy or hairy colloids.
Collapse
Affiliation(s)
- Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
- These authors contributed equally: Furqan Dar, Samuel R. Cohen, and Jeong-Mo Choi
| | - Samuel R. Cohen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
- These authors contributed equally: Furqan Dar, Samuel R. Cohen, and Jeong-Mo Choi
| | - Diana M. Mitrea
- Dewpoint Therapeutics Inc., 451 D Street, Boston, MA 02210, USA
| | - Aaron H. Phillips
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Wellington C. Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Christopher B. Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
- These authors contributed equally: Furqan Dar, Samuel R. Cohen, and Jeong-Mo Choi
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|