1
|
Lyu B, Jiang J, Jiang Z. Molecular Design of Positively Charged 3D Covalent-Organic Framework Membranes for Li +/Mg 2+ Separation. SMALL METHODS 2024:e2401537. [PMID: 39737642 DOI: 10.1002/smtd.202401537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/13/2024] [Indexed: 01/01/2025]
Abstract
3D covalent-organic framework (3D COF) membranes have unique features such as smaller pore sizes and more interconnected networks compared with 2D COF counterparts. However, the complicated and unmanageable fabrication hinders their rapid development. Molecular simulation, which can efficiently explore the structure-performance relationship of membranes, holds great promise in accelerating the development of 3D COF membranes. In this study, a series of 3D-COF membranes (TFPM-Pa-X) is designed with different charge densities (fully charged, partially charged, and neutral) and interpenetration numbers (2-, 3-, 4-, and 5-fold), subsequently investigate their contributions to Li+/Mg2+ separation through molecular simulation. Membrane morphology and pore size are found to strongly depend on the charged density and interpenetration number. The pore size and Cl- ion density play a crucial role in governing membrane separation performance. TFPM-Pa-X membrane with a smaller interpenetration number and a higher charge density promotes Li+/Mg2+ separation. The fully charged 2-fold interpenetrated membrane has superior performance in breaking the trade-off between the flux of Li+ (JLi +) and the selectivity of Li+ over Mg2+ (SLi + /Mg 2+). This study may facilitate the rational design of new 3D COF membranes for high-performance ion separation.
Collapse
Affiliation(s)
- Bohui Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
2
|
Zou K, Ling H, Wang Q, Zhu C, Zhang Z, Huang D, Li K, Wu Y, Xin W, Kong XY, Jiang L, Wen L. Turing-type nanochannel membranes with extrinsic ion transport pathways for high-efficiency osmotic energy harvesting. Nat Commun 2024; 15:10231. [PMID: 39592643 PMCID: PMC11599864 DOI: 10.1038/s41467-024-54622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Two-dimensional (2D) nanofluidic channels with confined transport pathways and abundant surface functional groups have been extensively investigated to achieve osmotic energy harvesting. However, solely relying on intrinsic interlayer channels results in insufficient permeability, thereby limiting the output power densities, which poses a significant challenge to the widespread application of these materials. Herein, we present a nanoconfined sacrificial template (NST) strategy to create a crafted channel structure, termed as Turing-type nanochannels, within the membrane. Extrinsic interlaced channels are formed between the lamellae using copper hydroxide nanowires as sacrificial templates. These Turing-type nanochannels significantly increase transport pathways and functional areas, resulting in a 23% enhancement in ionic current while maintaining a cation selectivity of 0.91. The output power density of the Turing-type nanochannel membrane increases from 3.9 to 5.9 W m-2 and remains stable for at least 120 hours. This membrane exhibits enhanced applicability in real saltwater environments across China, achieving output power densities of 7.7 W m-2 in natural seawater and 9.8 W m-2 in salt-lake brine. This work demonstrates the promising potential of the Turing-channel design for nanoconfined ionic transport in the energy conversion field.
Collapse
Affiliation(s)
- Kehan Zou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Haoyang Ling
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Qingchen Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Congcong Zhu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Dehua Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Ke Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yuge Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China.
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
3
|
Chen S, Meng W, Tong Z, Chen P, Gao F, Hou Y, Lu J, He Q, Wang H, Zhan X, Zhang Q. Modular Customized Biomimetic Nanofluidic Diode for Tunable Asymmetric Ion Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404605. [PMID: 39248680 DOI: 10.1002/smll.202404605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/11/2024] [Indexed: 09/10/2024]
Abstract
Artificial ion diodes, inspired by biological ion channels, have made significant contributions to the fields of physics, chemistry, and biology. However, constructing asymmetric sub-nanofluidic membranes that simultaneously meet the requirements of easy fabrication, high ion transport efficiency, and tunable ion transport remains a challenge. Here, a direct and flexible in situ staged host-guest self-assembly strategy is employed to fabricate ion diode membranes capable of achieving zonal regulation. Coupling the interfacial polymerization process with a host-guest assembly strategy, it is possible to easily manipulate the type, order, thickness, and charge density of each module by introducing two oppositely charged modules in stages. This method enables the tuning of ion transport behavior over a wide range salinity, as well as responsive to varying pH levels. To verify the potential of controllable diode membranes for application, two ion diode membranes with different ion selectivity and high charge density are coupled in a reverse electrodialysis device. This resulted in an output power density of 63.7 W m-2 at 50-fold NaCl concentration gradient, which is 12 times higher than commercial standards. This approach shows potential for expanding the variety of materials that are appropriate for microelectronic power generation devices, desalination, and biosensing.
Collapse
Affiliation(s)
- Sifan Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wentong Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zheming Tong
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pu Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Feng Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haihua Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| |
Collapse
|
4
|
Hou S, Zhang M, Huo Y, Chen X, Qian W, Zhang W, Zhang S. Recent advances and applications of ionic covalent organic frameworks in food analysis. J Chromatogr A 2024; 1730:465113. [PMID: 38959656 DOI: 10.1016/j.chroma.2024.465113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Ionic covalent organic frameworks with both crystallinity and charged sites have attracted significant attention from the scientific community. The versatile textural structures, precisely defined channels, and abundant charged sites of ionic COFs offer immense potential in various areas such as separation, sample pretreatment, ion conduction mechanisms, sensing applications, catalytic reactions, and energy storage systems. This review presents a comprehensive overview of facile preparation methods for ionic covalent organic frameworks (iCOFs), along with their applications in food sample pretreatment techniques such as solid-phase extraction (SPE), magnetic solid-phase extraction (MSPE), and dispersive solid-phase extraction (DSPE). Furthermore, it highlights the extensive utilization of iCOFs in detecting various food contaminants including pesticides, contaminants from food packaging, veterinary drugs, perfluoroalkyl substances, and poly-fluoroalkyl substances. Specifically, this review critically discusses the limitations, challenges, and future prospects associated with employing iCOF materials to ensure food safety.
Collapse
Affiliation(s)
- Shijiao Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Mengjiao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yichan Huo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xin Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wenping Qian
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Food Laboratory of Zhongyuan, Wenming Road 100, Luohe, Henan 462000, PR China; Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Food Laboratory of Zhongyuan, Wenming Road 100, Luohe, Henan 462000, PR China; Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
5
|
Xu M, Li D, Feng Y, Yuan Y, Wu Y, Zhao H, Kumar RV, Feng G, Xi K. Microporous Materials in Polymer Electrolytes: The Merit of Order. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405079. [PMID: 38922998 DOI: 10.1002/adma.202405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Solid-state batteries (SSBs) have garnered significant attention in the critical field of sustainable energy storage due to their potential benefits in safety, energy density, and cycle life. The large-scale, cost-effective production of SSBs necessitates the development of high-performance solid-state electrolytes. However, the manufacturing of SSBs relies heavily on the advancement of suitable solid-state electrolytes. Composite polymer electrolytes (CPEs), which combine the advantages of ordered microporous materials (OMMs) and polymer electrolytes, meet the requirements for high ionic conductivity/transference number, stability with respect to electrodes, compatibility with established manufacturing processes, and cost-effectiveness, making them particularly well-suited for mass production of SSBs. This review delineates how structural ordering dictates the fundamental physicochemical properties of OMMs, including ion transport, thermal transfer, and mechanical stability. The applications of prominent OMMs are critically examined, such as metal-organic frameworks, covalent organic frameworks, and zeolites, in CPEs, highlighting how structural ordering facilitates the fulfillment of property requirements. Finally, an outlook on the field is provided, exploring how the properties of CPEs can be enhanced through the dimensional design of OMMs, and the importance of uncovering the underlying "feature-function" mechanisms of various CPE types is underscored.
Collapse
Affiliation(s)
- Ming Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Danyang Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuhe Feng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yu Yuan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yutong Wu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Hongyang Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - R Vasant Kumar
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Guodong Feng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Kai Xi
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
6
|
Wang P, Tao W, Zhou T, Wang J, Zhao C, Zhou G, Yamauchi Y. Nanoarchitectonics in Advanced Membranes for Enhanced Osmotic Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404418. [PMID: 38973652 DOI: 10.1002/adma.202404418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Indexed: 07/09/2024]
Abstract
Osmotic energy, often referred to as "blue energy", is the energy generated from the mixing of solutions with different salt concentrations, offering a vast, renewable, and environmentally friendly energy resource. The efficacy of osmotic power production considerably relies on the performance of the transmembrane process, which depends on ionic conductivity and the capability to differentiate between positive and negative ions. Recent advancements have led to the development of membrane materials featuring precisely tailored ion transport nanochannels, enabling high-efficiency osmotic energy harvesting. In this review, ion diffusion in confined nanochannels and the rational design and optimization of membrane architecture are explored. Furthermore, structural optimization of the membrane to mitigate transport resistance and the concentration polarization effect for enhancing osmotic energy harvesting is highlighted. Finally, an outlook on the challenges that lie ahead is provided, and the potential applications of osmotic energy conversion are outlined. This review offers a comprehensive viewpoint on the evolving prospects of osmotic energy conversion.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Weixiang Tao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Tianhong Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jie Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chenrui Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| |
Collapse
|
7
|
Yang Y, Zhou S, Lv Z, Hung CT, Zhao Z, Zhao T, Chao D, Kong B, Zhao D. Unipolar Ionic Diode Nanofluidic Membranes Enabled by Stepped Mesochannels for Enhanced Salinity Gradient Energy Harvesting. J Am Chem Soc 2024; 146:19580-19589. [PMID: 38977375 DOI: 10.1021/jacs.4c06949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Developing ionic diode membranes featuring asymmetric structures is in high demand for salinity gradient energy harvesting. These membranes offer benefits in mitigating ion concentration polarization, thereby promoting ion permeability. However, most reported works focus on the role of heterogeneous charge-based bipolar ionic diode membranes for ion concentration polarization suppression, with comparatively less attention given to maintaining ion selectivity. Herein, unipolar ionic diode nanofluidic mesoporous silica membranes featuring stepped mesochannels were developed via a micellar sequential oriented interfacial self-assembly strategy as a salinity gradient energy harvester. Due to the asymmetric mesochannels and unipolar structure (both sides carry negative charge), the ionic diode membranes exhibit a strong rectification ratio of ∼15.91 to facilitate unidirectional ion transport while maintaining excellent cation selectivity (cation transfer number of ∼0.85). Besides, the vertically aligned mesochannels significantly reduce ion transport resistance, generating a high ionic flux. Consequently, the unipolar ionic diode nanofluidic membranes demonstrate a power output of 5.88 W/m2 between artificial sea and river water. The unipolar feature gives notable enhancements of 296% and 144% in power output compared to the symmetric membrane and bipolar ionic diode membrane, respectively. This work opens up new routes for designing ionic diode membranes for salinity gradient energy harvesting.
Collapse
Affiliation(s)
- Yi Yang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Shan Zhou
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zirui Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Chin-Te Hung
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Biao Kong
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
8
|
Huang D, Zou K, Wu Y, Li K, Zhang Z, Liu T, Chen W, Yan Z, Zhou S, Kong XY, Jiang L, Wen L. TRPM4-Inspired Polymeric Nanochannels with Preferential Cation Transport for High-Efficiency Salinity-Gradient Energy Conversion. J Am Chem Soc 2024. [PMID: 38842082 DOI: 10.1021/jacs.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Biological ion channels exhibit switchable cation transport with ultrahigh selectivity for efficient energy conversion, such as Ca2+-activated TRPM4 channels tuned by cation-π interactions, but achieving an analogous highly selective function is challenging in artificial nanochannels. Here, we design a TRPM4-inspired cation-selective nanochannel (CN) assembled by two poly(ether sulfone)s, respectively, with sulfonate acid and indole moieties, which act as cation-selective activators to manage Na+/Cl- selectivity via ionic and cation-π interactions. The cation selectivity of CNs can be activated by Na+, and thereby the Na+ transference number significantly improves from 0.720 to 0.982 (Na+/Cl- selectivity ratio from 2.6 to 54.6) under a 50-fold salinity gradient, surpassing the K+ transference number (0.886) and Li+ transference number (0.900). The TRPM4-inspired nanochannel membrane enabled a maximum output power density of 5.7 W m-2 for salinity-gradient power harvesting. Moreover, a record energy conversion efficiency of up to 46.5% is provided, superior to most nanochannel membranes (below 30%). This work proposes a novel strategy to biomimetic nanochannels for highly selective cation transport and high-efficiency salinity-gradient energy conversion.
Collapse
Affiliation(s)
- Dehua Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kehan Zou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuge Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ke Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianchi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zidi Yan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou Jiangsu 215123, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou Jiangsu 215123, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, PR China
| |
Collapse
|
9
|
Liu C, Yoshio M. Ionic Liquid Crystal-Polymer Composite Electromechanical Actuators: Design of Two-Dimensional Molecular Assemblies for Efficient Ion Transport and Effect of Electrodes on Actuator Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27750-27760. [PMID: 38761145 DOI: 10.1021/acsami.4c03821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
We present the development of free-standing ionic liquid crystal-polymer composite electrolyte films aimed at achieving high-frequency response electromechanical actuators. Our approach entails designing novel layered ionic liquid-crystalline (LC) assemblies by complexing a mesomorphic dimethylphosphate with either a lithium salt or a room-temperature ionic liquid through the formation of ion-dipole interactions or hydrogen bonds. These electrolytes, exhibiting room-temperature ionic conductivities on the order of 10-4 S cm-1 and wide LC temperature ranges up to 77 °C, were successfully integrated into porous polymer networks. We systematically investigated the impact of ions and electrodes on the performance of ionic electroactive actuators. Specifically, the Li+-based liquid crystal-polymer composite actuator with PEDOT:PSS electrodes demonstrated the highest bending deformation, achieving a strain of 0.68% and exhibiting a broad frequency response up to 110 Hz, with a peak-to-peak displacement of 3 μm. In contrast, the ionic-liquid-based liquid crystal-polymer composite actuator with active carbon electrodes showcased a bending response at a maximum frequency of 50 Hz and a force generation of 0.48 mN, without exhibiting the back relaxation phenomenon. These findings offer valuable insights for advancing high-performance electromechanical systems with applications ranging from soft robotics to haptic interfaces.
Collapse
Affiliation(s)
- Chengyang Liu
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masafumi Yoshio
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
10
|
Liu M, Xu Q, Zeng G. Ionic Covalent Organic Frameworks in Adsorption and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202404886. [PMID: 38563659 DOI: 10.1002/anie.202404886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
The ion extraction and electro/photo catalysis are promising methods to address environmental and energy issues. Covalent organic frameworks (COFs) are a class of promising template to construct absorbents and catalysts because of their stable frameworks, high surface areas, controllable pore environments, and well-defined catalytic sites. Among them, ionic COFs as unique class of crystalline porous materials, with charges in the frameworks or along the pore walls, have shown different properties and resulting performance in these applications with those from charge-neutral COFs. In this review, current research progress based on the ionic COFs for ion extraction and energy conversion, including cationic/anionic materials and electro/photo catalysis is reviewed in terms of the synthesis strategy, modification methods, mechanisms of adsorption and catalysis, as well as applications. Finally, we demonstrated the current challenges and future development of ionic COFs in design strategies and applications.
Collapse
Affiliation(s)
- Minghao Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315199, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Du W, Liu L, Yin L, Li B, Ma Y, Guo X, Zang HY, Zhang N, Zhu G. Ultrathin Free-Standing Porous Aromatic Framework Membranes for Efficient Anion Transport. Angew Chem Int Ed Engl 2024; 63:e202402943. [PMID: 38529715 DOI: 10.1002/anie.202402943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Porous aromatic frameworks (PAFs) show promising potential in anionic conduction due to their high stability and customizable functionality. However, the insolubility of most PAFs presents a significant challenge in their processing into membranes and subsequent applications. In this study, continuous PAF membranes with adjustable thickness were successfully created using liquid-solid interfacial polymerization. The rigid backbone and the stable C-C coupling endow PAF membrane with superior chemical and dimensional stabilities over most conventional polymer membranes. Different quaternary ammonium functionalities were anchored to the backbone through flexible alkyl chains with tunable length. The optimal PAF membrane exhibited an OH- conductivity of 356.6 mS ⋅ cm-1 at 80 °C and 98 % relative humidity. Additionally, the PAF membrane exhibited outstanding alkaline stability, retaining 95 % of its OH- conductivity after 1000 hours in 1 M NaOH. To the best of our knowledge, this is the first application of PAF materials in anion exchange membranes, achieving the highest OH- conductivity and exceptional chemical/dimensional stability. This work provides the possibility for the potential of PAF materials in anionic conductive membranes.
Collapse
Affiliation(s)
- Wenguang Du
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lin Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Liying Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Bo Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yu Ma
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoyu Guo
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Ying Zang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ning Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
12
|
Wang X, Jin Y, Zheng T, Li N, Han Y, Yu B, Wang K, Qi D, Wang T, Jiang J. Crystalline nanosheets of three-dimensional supramolecular frameworks with uniform thickness and high stability. Chem Sci 2024; 15:7586-7595. [PMID: 38784730 PMCID: PMC11110140 DOI: 10.1039/d4sc00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Fabricating three dimensional (3D) supramolecular frameworks (SMFs) into stable crystalline nanosheets remains a great challenge due to the homogeneous and weak inter-building block interactions along 3D directions. Herein, crystalline nanosheets of a 3D SMF with a uniform thickness of 4.8 ± 0.1 nm immobilized with Pt nanocrystals on the surface (Q[8]/Pt NSs) were fabricated via the solid-liquid reaction between cucurbit[8]uril/H2PtCl6 single crystals and hydrazine hydrate with the help of gas and heat yielded during the reaction process. A series of experiments and theoretical calculations reveal the ultrahigh stability of Q[8]/Pt NSs due to the high density hydrogen bonding interaction among neighboring Q[8] molecules. This in turn endows Q[8]/Pt NSs with excellent photocatalytic and continuous thermocatalytic CO oxidation performance, representing the thus-far reported best Pt nano-material-based catalysts.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
13
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Liu L, Ma Y, Li B, Yin L, Zang HY, Zhang N, Bi H, Wang S, Zhu G. Continuous Ultrathin Zwitterionic Covalent Organic Framework Membrane Via Surface-Initiated Polymerization Toward Superior Water Retention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308499. [PMID: 38009797 DOI: 10.1002/smll.202308499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Efficient construction of proton transport channels in proton exchange membranes maintaining conductivity under varied humidity is critical for the development of fuel cells. Covalent organic frameworks (COFs) hold great potential in providing precise and fast ion transport channels. However, the preparation of continuous free-standing COF membranes retaining their inherent structural advantages to realize excellent proton conduction performance is a major challenge. Herein, a zwitterionic COF material bearing positive ammonium ions and negative sulphonic acid ions is developed. Free-standing COF membrane with adjustable thickness is constructed via surface-initiated polymerization of COF monomers. The porosity, continuity, and stability of the membranes are demonstrated via the transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) characterization. The rigidity of the COF structure avoids swelling in aqueous solution, which improves the chemical stability of the proton exchange membranes and improves the performance stability. In the higher humidity range (50-90%), the prepared zwitterionic COF membrane exhibits superior capability in retaining the conductivity compared to COF membrane merely bearing sulphonic acid group. The established strategy shows the potential for the application of zwitterionic COF in the proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Lin Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yu Ma
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Bo Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Liying Yin
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Ying Zang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ning Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hai Bi
- Ji Hua Laboratory, Foshan, 528200, P. R. China
| | - Shaolei Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
15
|
Zuo P, Ran J, Ye C, Li X, Xu T, Yang Z. Advancing Ion Selective Membranes with Micropore Ion Channels in the Interaction Confinement Regime. ACS NANO 2024; 18:6016-6027. [PMID: 38349043 DOI: 10.1021/acsnano.3c12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ion exchange membranes allowing the passage of charge-carrying ions have established their critical role in water, environmental, and energy-relevant applications. The design strategies for high-performance ion exchange membranes have evolved beyond creating microphase-separated membrane morphologies, which include advanced ion exchange membranes to ion-selective membranes. The properties and functions of ion-selective membranes have been repeatedly updated by the emergence of materials with subnanometer-sized pores and the understanding of ion movement under confined micropore ion channels. These research progresses have motivated researchers to consider even greater aims in the field, i.e., replicating the functions of ion channels in living cells with exotic materials or at least targeting fast and ion-specific transmembrane conduction. To help realize such goals, we briefly outline and comment on the fundamentals of rationally designing membrane pore channels for ultrafast and specific ion conduction, pore architecture/chemistry, and membrane materials. Challenges are discussed, and perspectives and outlooks are given.
Collapse
Affiliation(s)
- Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jin Ran
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Chunchun Ye
- EastCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
16
|
Fu W, Zhang J, Zhang Q, Ahmad M, Sun Z, Li Z, Zhu Y, Zhou Y, Wang S. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion. Int J Biol Macromol 2024; 257:128546. [PMID: 38061510 DOI: 10.1016/j.ijbiomac.2023.128546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
The development of advanced nanofluidic membranes with better ion selectivity, efficient energy conversion and high output power density remains challenging. Herein, we prepared nanofluidic hybrid membranes based on TEMPO oxidized cellulose nanofibers (T-CNF) and manganese-based metal organic framework (MOF) using a simple in situ synthesis method. Incorporated T-CNF endows the MOF/T-CNF hybrid membrane with a high cation selectivity up to 0.93. Nanoporous MOF in three-dimensional interconnected nanochannels provides massive ion transport pathways. High transmembrane ion flux and low ion permeation energy barrier are correlated with a superior energy conversion efficiency (36 %) in MOF/T-CNF hybrid membrane. When operating under 50-fold salinity gradient by mixing simulated seawater and river water, the MOF/T-CNF hybrid membrane achieves a maximum power density value of 1.87 W m-2. About 5-fold increase in output power density was achieved compared to pure T-CNF membrane. The integration of natural nanofibers with high charge density and nanoporous MOF materials is demonstrated an effective and novel strategy for the enhancement of output power density of nanofluidic membranes, showing the great potential of MOF/T-CNF hybrid membranes as efficient nanofluidic osmotic energy generators.
Collapse
Affiliation(s)
- Wenkai Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jiajian Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhouyue Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxuan Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuyang Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Sha Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|