1
|
Ma W, Han R, Zhang W, Zhang H, Zhao L, Chen L, Zhu L. Advanced oxidation process/coagulation coupled with membrane distillation (AOP/Coag-MD) for efficient ammonia recovery: Elucidating biofouling control performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134093. [PMID: 38522199 DOI: 10.1016/j.jhazmat.2024.134093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
The inadequate understanding of the biofouling formation mechanism and the absence of effective control have inhibited the commercial application of membrane distillation (MD). In this study, an advanced oxidation process (AOP)/coagulation-coupled (Coag) membrane distillation system was proposed and exhibited the potential for MD ammonia recovery (recovery rate: 94.1%). Extracellular polymeric substances (EPS) and soluble microbial products (SMP) components such as humic acid and tryptophan-like proteins were disrupted and degraded in the digestate. The curtailment and sterilizing efficiency of AOP on biofilm growth was also verified by optical coherence tomography (OCT) in situ real-time monitoring and confocal laser scanning microscopy (CLSM). Peroxymonosulfate (PMS) was activated to generate sulfate (SO4•-) and hydroxyl radicals (HO•), which altered the microbial community. After oxidative treatment, 16 S rRNA sequencing indicated that the dominant phylum of the microbial community evolved into Firmicutes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that free radicals produced by PMS could disrupt cells' signaling molecules and interactions. In conjunction with these analyses, the mechanisms of response to free radical attack by Gram-negative bacteria, Gram-positive bacteria, and fungi were revealed. This research provided new insights into the field of membrane fouling control for membrane technology resource recovery processes, broadening the impact of AOP applications on microbiological response and fate in the environment.
Collapse
Affiliation(s)
- Wucheng Ma
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Rui Han
- CSD Water Service Co., Ltd. Jiangsu Branch, Nanjing 210000, China
| | - Wei Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hao Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Linting Zhao
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
2
|
Do H, Li ZR, Tripathi PK, Mitra S, Guerra S, Dash A, Weerasekera D, Makthal N, Shams S, Aggarwal S, Singh BB, Gu D, Du Y, Olsen RJ, LaRock C, Zhang W, Kumaraswami M. Engineered probiotic overcomes pathogen defences using signal interference and antibiotic production to treat infection in mice. Nat Microbiol 2024; 9:502-513. [PMID: 38228859 PMCID: PMC10847043 DOI: 10.1038/s41564-023-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Probiotic supplements are suggested to promote human health by preventing pathogen colonization. However, the mechanistic bases for their efficacy in vivo are largely uncharacterized. Here using metabolomics and bacterial genetics, we show that the human oral probiotic Streptococcus salivarius K12 (SAL) produces salivabactin, an antibiotic that effectively inhibits pathogenic Streptococcus pyogenes (GAS) in vitro and in mice. However, prophylactic dosing with SAL enhanced GAS colonization in mice and ex vivo in human saliva. We showed that, on co-colonization, GAS responds to a SAL intercellular peptide signal that controls SAL salivabactin production. GAS produces a secreted protease, SpeB, that targets SAL-derived salivaricins and enhances GAS survival. Using this knowledge, we re-engineered probiotic SAL to prevent signal eavesdropping by GAS and potentiate SAL antimicrobials. This engineered probiotic demonstrated superior efficacy in preventing GAS colonization in vivo. Our findings show that knowledge of interspecies interactions can identify antibiotic- and probiotic-based strategies to combat infection.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Research unit of cryogenic novel material, Korea Polar Research Institute, Incheon, South Korea
| | - Zhong-Rui Li
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Praveen Kumar Tripathi
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Sonali Mitra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Stephanie Guerra
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Ananya Dash
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Dulanthi Weerasekera
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Syed Shams
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Bharat Bhushan Singh
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Di Gu
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Christopher LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
- Department of Medicine, Division of Infectious Diseases, Emory School of Medicine, Atlanta, GA, USA
- Emory Antibiotic Resistance Center, Emory School of Medicine, Atlanta, GA, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
3
|
Kullberg RFJ, Rozday TJ, Haak BW. Microbial murmurs - decoding hidden conversations between bacteria. Nat Rev Microbiol 2024; 22:3. [PMID: 37932604 DOI: 10.1038/s41579-023-00991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Affiliation(s)
- Robert F J Kullberg
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Bastiaan W Haak
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|