1
|
Nan N, Liu Y, Yan Z, Zhang Y, Li S, Zhang J, Qin G, Sang N. dilp2-Mediated Insulin Signaling Pathway Was Involved in O 3-Induced Multigenerational Effects of Shortened Lifespan in Drosophila melanogasters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39903660 DOI: 10.1021/acs.est.4c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
As a long-standing atmospheric pollutant, ozone (O3) exerts enduring effects on biological health. However, experimental research on its impact on organism lifespan and generational effects is limited. This study exposed three generations of fruit flies (Drosophila melanogaster) to O3, revealing a shortened lifespan across generations. Specifically, after O3 exposure, the lifespan of the F2 generation was significantly reduced compared with F0 and F1 generations, indicating a cumulative multigenerational effect. Transcriptome analysis unveiled significant disruptions in metabolic pathways, notably the insulin signaling pathway. Subsequent qRT-PCR analysis showed elevated mRNA levels of insulin pathway-related genes (dilp2, dilp3, dilp5, InR, and TOR), alongside decreased expression levels of FOXO, 4E-BP, and Atg5 in flies exposed to O3. Notably, knocking down dilp2, rather than dilp3, dilp5, and InR, rescued the O3-induced lifespan shortening. Overall, O3 exposure triggered activation of the dilp2-mediated InR-FOXO/TOR-4E-BP-Atg5 signaling pathway, potentially contributing to shortened lifespan with cumulative effects. This study highlights the viability of employing fruit flies as a model to evaluate the multigenerational toxicity of environmental pollutants, particularly atmospheric pollutants.
Collapse
Affiliation(s)
- Nan Nan
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, Shanxi, PR China
| | - Yuntong Liu
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, Shanxi, PR China
| | - Zhipeng Yan
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, Shanxi, PR China
| | - Yaru Zhang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, Shanxi, PR China
| | - Shiya Li
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, Shanxi, PR China
| | - Jianqin Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, PR China
| | - Guohua Qin
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, Shanxi, PR China
| | - Nan Sang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, Shanxi, PR China
| |
Collapse
|
2
|
Lourenço A, Subramanian A, Spencer R, Anaya M, Miao J, Fu W, Chow E, Thomson M. Protein CREATE enables closed-loop design of de novo synthetic protein binders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.20.629847. [PMID: 39803556 PMCID: PMC11722223 DOI: 10.1101/2024.12.20.629847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Proteins have proven to be useful agents in a variety of fields, from serving as potent therapeutics to enabling complex catalysis for chemical manufacture. However, they remain difficult to design and are instead typically selected for using extensive screens or directed evolution. Recent developments in protein large language models have enabled fast generation of diverse protein sequences in unexplored regions of protein space predicted to fold into varied structures, bind relevant targets, and catalyze novel reactions. Nevertheless, we lack methods to characterize these proteins experimentally at scale and update generative models based on those results. We describe Protein CREATE (Computational Redesign via an Experiment-Augmented Training Engine), an integrated computational and experimental pipeline that incorporates an experimental workflow leveraging next generation sequencing and phage display with single-molecule readouts to collect vast amounts of quantitative binding data for updating protein large language models. We use Protein CREATE to generate and assay thousands of designed binders to IL-7 receptor α and insulin receptor with parallel positive and negative selections to identify on-target binders. We discover not only individual novel binders but also features of ligand-receptor binding, including preservation of the IL7Rα - ligand hydrophobic interface specifically and existence of multiple approaches to contact the insulin receptor. We also demonstrate the importance of structural features, such as the lack of unpaired cysteine residues, toward design fidelity and find computational pre-screening metrics, such as interchain predicted TM scoring (iPTM), while useful, are imperfect predictors as they neither guarantee experimental binding nor rule it out. We use the data collected from Protein CREATE to score designs from the initial generative models. Globally, Protein CREATE will power future closed-loop design-build-test cycles to enable fine-grained design of protein binders.
Collapse
|
3
|
Seo H, Yoon JW, Kwon Y, Yeom E. Banana Peel Extracts Enhance Climbing Ability and Extend Lifespan in Drosophila melanogaster. Dev Reprod 2024; 28:87-94. [PMID: 39444642 PMCID: PMC11495883 DOI: 10.12717/dr.2024.28.3.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 10/25/2024]
Abstract
Banana peels, often discarded as waste, represent one of the most abundant food by-products, highlighting the need for effective waste management and resource recycling strategies. Due to their rich nutritional content, banana peels have been investigated for various health benefits, including anti-obesity effects. In this study, we examined the potential anti-aging properties of banana peel extracts (BPEs) in Drosophila melanogaster. Our findings demonstrated that flies fed with BPEs exhibited an extended lifespan and a significant improvement in age-related decline in climbing ability. Additionally, Dilp2 mRNA expression level is markedly decreased in aged flies fed with BPEs. These results suggest that BPEs may serve as a potential anti-aging agent by enhancing locomotor function and extending lifespan, potentially through the modulation of insulin signaling in D. melanogaster.
Collapse
Affiliation(s)
- Hyejin Seo
- School of Life Science and Biotechnology,
College of Natural Sciences, Kyungpook National University,
Daegu 41566, Korea
- School of Life Sciences, BK21 FOUR KNU
Creative BioResearch Group, Kyungpook National University,
Daegu 41566, Korea
| | - Jong-Won Yoon
- School of Life Science and Biotechnology,
College of Natural Sciences, Kyungpook National University,
Daegu 41566, Korea
- School of Life Sciences, BK21 FOUR KNU
Creative BioResearch Group, Kyungpook National University,
Daegu 41566, Korea
- KNU-G LAMP Research Center, KNU-Institute
of Basic Sciences, School of Life Sciences, College of Natural Sciences,
Kyungpook National University, Daegu 41556,
Korea
| | - Younghwi Kwon
- KNU-G LAMP Research Center, KNU-Institute
of Basic Sciences, School of Life Sciences, College of Natural Sciences,
Kyungpook National University, Daegu 41556,
Korea
| | - Eunbyul Yeom
- School of Life Science and Biotechnology,
College of Natural Sciences, Kyungpook National University,
Daegu 41566, Korea
- School of Life Sciences, BK21 FOUR KNU
Creative BioResearch Group, Kyungpook National University,
Daegu 41566, Korea
- KNU-G LAMP Research Center, KNU-Institute
of Basic Sciences, School of Life Sciences, College of Natural Sciences,
Kyungpook National University, Daegu 41556,
Korea
| |
Collapse
|
4
|
E L, Shan Y, Luo Y, Feng L, Dai Y, Gao M, Lv Y, Zhang C, Liu H, Wen N, Zhang R. Insulin promotes the bone formation capability of human dental pulp stem cells through attenuating the IIS/PI3K/AKT/mTOR pathway axis. Stem Cell Res Ther 2024; 15:227. [PMID: 39075596 PMCID: PMC11287875 DOI: 10.1186/s13287-024-03843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Insulin has been known to regulate bone metabolism, yet its specific molecular mechanisms during the proliferation and osteogenic differentiation of dental pulp stem cells (DPSCs) remain poorly understood. This study aimed to explore the effects of insulin on the bone formation capability of human DPSCs and to elucidate the underlying mechanisms. METHODS Cell proliferation was assessed using a CCK-8 assay. Cell phenotype was analyzed by flow cytometry. Colony-forming unit-fibroblast ability and multilineage differentiation potential were evaluated using Toluidine blue, Oil red O, Alizarin red, and Alcian blue staining. Gene and protein expressions were quantified by real-time quantitative polymerase chain reaction and Western blotting, respectively. Bone metabolism and biochemical markers were analyzed using electrochemical luminescence and chemical colorimetry. Cell adhesion and growth on nano-hydroxyapatite/collagen (nHAC) were observed with a scanning electron microscope. Bone regeneration was assessed using micro-CT, fluorescent labeling, immunohistochemical and hematoxylin and eosin staining. RESULTS Insulin enhanced the proliferation of human DPSCs as well as promoted mineralized matrix formation in a concentration-dependent manner. 10- 6 M insulin significantly up-regulated osteogenic differentiation-related genes and proteins markedly increased the secretion of bone metabolism and biochemical markers, and obviously stimulated mineralized matrix formation. However, it also significantly inhibited the expression of genes and proteins of receptors and receptor substrates associated with insulin/insulin-like growth factor-1 signaling (IIS) pathway, obviously reduced the expression of the phosphorylated PI3K and the ratios of the phosphorylated PI3K/total PI3K, and notably increased the expression of the total PI3K, phosphorylated AKT, total AKT and mTOR. The inhibitor LY294002 attenuated the responsiveness of 10- 6 M insulin to IIS/PI3K/AKT/mTOR pathway axis, suppressing the promoting effect of insulin on cell proliferation, osteogenic differentiation and bone formation. Implantation of 10- 6 M insulin treated DPSCs into the backs of severe combined immunodeficient mice and the rabbit jawbone defects resulted in enhanced bone formation. CONCLUSIONS Insulin induces insulin resistance in human DPSCs and effectively promotes their proliferation, osteogenic differentiation and bone formation capability through gradually inducing the down-regulation of IIS/PI3K/AKT/mTOR pathway axis under insulin resistant states.
Collapse
Affiliation(s)
- Lingling E
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanbo Shan
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuxi Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Feng
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yawen Dai
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mingzhu Gao
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Lv
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chaoran Zhang
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongchen Liu
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ning Wen
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Rong Zhang
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Zhu R, Chin-Sang ID. C. elegans insulin-like peptides. Mol Cell Endocrinol 2024; 585:112173. [PMID: 38346555 DOI: 10.1016/j.mce.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
Insulin-like peptides are a group of hormones crucial for regulating metabolism, growth, and development in animals. Invertebrates, such as C. elegans, have been instrumental in understanding the molecular mechanisms of insulin-like peptides. Here, we review the 40 insulin-like peptide genes encoded in the C. elegans genome. Despite the large number, there is only one C. elegans insulin-like peptide receptor, called DAF-2. The insulin and insulin-like growth factor signaling (IIS) pathway is evolutionarily conserved from worms to humans. Thus C. elegans provides an excellent model to understand how these insulin-like peptides function. C. elegans is unique in that it possesses insulin-like peptides that have antagonistic properties, unlike all human insulin-like peptides, which are agonists. This review provides an overview of the current literature on C. elegans insulin-like peptide structures, processing, tissue localization, and regulation. We will also provide examples of insulin-like peptide signaling in C. elegans during growth, development, germline development, learning/memory, and longevity.
Collapse
Affiliation(s)
- Rain Zhu
- Department of Biology, Queen's University, Kingston ON Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston ON Canada.
| |
Collapse
|
6
|
Zandawala M, Gera J. Leptin- and cytokine-like unpaired signaling in Drosophila. Mol Cell Endocrinol 2024; 584:112165. [PMID: 38266772 DOI: 10.1016/j.mce.2024.112165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Animals have evolved a multitude of signaling pathways that enable them to orchestrate diverse physiological processes to tightly regulate systemic homeostasis. This signaling is mediated by various families of peptide hormones and cytokines that are conserved across the animal kingdom. In this review, we primarily focus on the unpaired (Upd) family of proteins in Drosophila which are evolutionarily related to mammalian leptin and the cytokine interleukin 6. We summarize expression patterns of Upd in Drosophila and discuss the parallels in structure, signaling pathway, and functions between Upd and their mammalian counterparts. In particular, we focus on the roles of Upd in governing metabolic homeostasis, growth and development, and immune responses. We aim to stimulate future studies on leptin-like signaling in other phyla which can help bridge the evolutionary gap between insect Upd and vertebrate leptin and cytokines like interleukin 6.
Collapse
Affiliation(s)
- Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
7
|
Krishnan H, Ahmed S, Hubbard SR, Miller WT. Biochemical characterization of the Drosophila insulin receptor kinase and longevity-associated mutants. FASEB J 2024; 38:e23355. [PMID: 38071609 PMCID: PMC11284340 DOI: 10.1096/fj.202301948r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Drosophila melanogaster (fruit fly) insulin receptor (D-IR) is highly homologous to the human counterpart. Like the human pathway, D-IR responds to numerous insulin-like peptides to activate cellular signals that regulate growth, development, and lipid metabolism in fruit flies. Allelic mutations in the D-IR kinase domain elevate life expectancy in fruit flies. We developed a robust heterologous expression system to express and purify wild-type and longevity-associated mutant D-IR kinase domains to investigate enzyme kinetics and substrate specificities. D-IR exhibits remarkable similarities to the human insulin receptor kinase domain but diverges in substrate preferences. We show that longevity-associated mutations reduce D-IR catalytic activity. Deletion of the unique kinase insert domain portion or mutations proximal to activating tyrosines do not influence kinase activity, suggesting their potential role in substrate recruitment and downstream signaling. Through biochemical investigations, this study enhances our comprehension of D-IR's role in Drosophila physiology, complementing genetic studies and expanding our knowledge on the catalytic functions of this conserved signaling pathway.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Stevan R. Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
8
|
Wang Z, Wang M, Tu S, Tuo P, Xie X, Zhu D. Identification of Two Insulin Receptors from the Swimming Crab Portunus trituberculatus: Molecular Characterization, Expression Analysis, and Interactions with Insulin-Like Androgenic Gland Hormone. THE BIOLOGICAL BULLETIN 2023; 245:68-76. [PMID: 38976851 DOI: 10.1086/731055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AbstractThe insulin-like androgenic gland hormone is a crucial sexual regulator that is involved in the masculine sexual differentiation of crustaceans. As an insulin-like peptide, the insulin-like androgenic gland hormone has been proposed to act through the insulin receptor-mediated pathway. The present study cloned and characterized two insulin receptors (PtIR1 and PtIR2) from the swimming crab Portunus trituberculatus hallmarked with a conserved intracellular tyrosine kinase catalytic domain and several other typical insulin receptor domains in their deduced amino acid sequences. Both insulin receptors were predominately expressed in the testis and the insulin-like androgenic gland hormone-producing organ androgenic gland. Their testicular expression during the annual cycle suggested that they may play critical roles in spermatogenesis. By using the protein colocalization analysis in HEK293 cells, interactions of PtIAG with the two PtIRs were further confirmed. In addition, the insulin receptor antagonist was found to attenuate the stimulatory effects of androgenic gland homogenate on the phosphorylated MAPK levels in testis explants, suggesting that the insulin receptor-dependent MAPK pathway may be essential for insulin-like androgenic gland hormone functions.
Collapse
|