1
|
Montalbano M, Marra G, Longhi M, Prati L, Selli E, Dozzi MV. Combined Role of {001} Facet-Enriched Morphology and Gold Nanoparticle Deposition on Anatase TiO 2 Photoactivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60208-60218. [PMID: 39438284 DOI: 10.1021/acsami.4c12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The interplay on anatase TiO2 photoactivity between particle morphology and gold nanoparticles (NPs) deposition, via either deposition-precipitation (DP) or photodeposition (P), is here investigated by evaluating the photoactivity of Au modified anatase (Au/TiO2) nanocrystals with either a pseudospherical shape or a nanosheet structure in both reduction and oxidation test reactions. The presence of Au NPs on the anatase surface only slightly affects its photoactivity in Cr(VI) reduction, which is kinetically limited by the anodic half-reaction, whereas a larger exposure of highly oxidant {001} facets is beneficial for overcoming this rate-determining step. In the photocatalytic oxidation of both formic acid, proceeding through a direct mechanism, and rhodamine B (RhB) on surface fluorinated photocatalysts, occurring through a hydroxyl-radical-mediated mechanism, the presence of gold NPs produces a significant photoactivity increase only with spherically shaped photocatalysts, mainly exposing {101} facets. These results are rationalized in light of the preferential migration of photogenerated, oppositely charged carriers toward different crystal facets. In fact, when the Au/TiO2 material mainly exposes the more oxidant {001} facets, where photoproduced holes preferentially migrate, recombination between these latter and the electrons captured by Au NPs is favored. Instead, Au NPs on {101} facets efficiently capture photopromoted electrons, preferentially migrating toward such facets with a consequent improvement of photoproduced charge separation.
Collapse
Affiliation(s)
- Marco Montalbano
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Gianluigi Marra
- ENI S.p.A Novara Laboratories (NOLAB), Renewable New Energies and Material Science Research Center, (DE-R&D), Via G. Fauser 4, 28100 Novara, Italy
| | - Mariangela Longhi
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Laura Prati
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
- Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4a, 20156 Milano, Italy
| | - Elena Selli
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Maria Vittoria Dozzi
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
2
|
Keyhanian M, García-Romeral N, Morales-García Á, Viñes F, Illas F. First principles modeling of composites involving TiO 2 clusters supported on M 2C MXenes. Phys Chem Chem Phys 2024; 26:25319-25328. [PMID: 39082376 DOI: 10.1039/d4cp01757a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
First-principles calculations based on density functional theory are performed to investigate the formation of titania/MXene composites taking (TiO2)5/M2C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) as cases of study. The present systematic analysis confirms a favorable, high exothermic interaction, which promotes important structural reconstructions of the (TiO2)5 cluster along with charge transfer from the MXene to titania. MXenes composed of d3 transition metals promote the strongest interaction, deformation energy, and charge transfer, followed by d4 and d5 M2C MXenes. We provide evidence that the formation of these (TiO2)5/M2C composites is governed by charge transfer, leading to scaling relationships. By using the electronegativity of the metal composing MXene and the MXene d-band center, we also establish linear correlations that can be used to predict the interaction strength of (TiO2)5/M2C composites just from the knowledge of the MXene composition. It is likely that the present trends hold for other TiO2/MXene composites.
Collapse
Affiliation(s)
- Masoomeh Keyhanian
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran
| | - Néstor García-Romeral
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Fu P, Chen C, Wu C, Meng B, Yue Q, Chen T, Yin W, Chi X, Yu X, Li R, Wang Y, Zhang Y, Luo W, Liu X, Han Y, Wang J, Xi S, Zhou Y. Covalent Organic Framework Stabilized Single CoN 4Cl 2 Site Boosts Photocatalytic CO 2 Reduction into Tunable Syngas. Angew Chem Int Ed Engl 2024:e202415202. [PMID: 39193917 DOI: 10.1002/anie.202415202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Solar carbon dioxide (CO2) reduction provides an attractive alternative to producing sustainable chemicals and fuel. However, the construction of a highly active photocatalyst was challenging because of the rapid charge recombination and sluggish surface CO2 reduction. Herein, a unique Co-N4Cl2 single site was fabricated by loading Co species into the 2,2'-bipyridine and triazine-containing covalent organic framework (COF) for CO2 conversion into syngas under visible light irradiation. The resulting champion catalyst TPy-COF-Co enabled a record-high CO production rate of 426 mmol g-1 h-1, associated with the unprecedented turnover number (TON) and turnover frequency (TOF) of 2095 and 1607 h-1, respectively. The catalyst also exhibited favorable recycling performance and widely adjustable syngas production (CO/H2 ratio: 1.8 : 1-1 : 16). A systematical investigation including operando synchrotron X-ray absorption fine structure (XAFS) spectroscopy, in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and theoretical calculation indicated that the triazine-based COF framework promoted the charge transfer towards the single Co-N4Cl2 sites that greatly promoted the CO2 activation by lowering the energy barrier of *COOH generation, facilitating the CO2 transformation. This work highlights the great potential of the molecular regulation of COF-derived single-atom catalysts to boost CO2 photoreduction efficiency.
Collapse
Affiliation(s)
- Ping Fu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Chao Wu
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Biao Meng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qihong Yue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Tao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wen Yin
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 101408, P. R. China
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
| | - Xiao Chi
- Department of Physics, National University of Singapore, 117576, Singapore, Republic of Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, 117603, Singapore, Republic of Singapore
| | - Ruiting Li
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yao Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wen Luo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaoling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
4
|
Liu Y, Lv X, Zhong Y, Wang G, Liu S, Chen S, Qi C, He M, Shangguan P, Luo Z, Li X, Guo J, Sun J, Bai F, Wang J. Self-Assembly Regulated Photocatalysis of Porphyrin-TiO 2 Nanocomposites. Molecules 2024; 29:3872. [PMID: 39202950 PMCID: PMC11357490 DOI: 10.3390/molecules29163872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Photoactive artificial nanocatalysts that mimic natural photoenergy systems can yield clean and renewable energy. However, their poor photoabsorption capability and disfavored photogenic electron-hole recombination hinder their production. Herein, we designed two nanocatalysts with various microstructures by combining the tailored self-assembly of the meso-tetra(p-hydroxyphenyl) porphine photosensitizer with the growth of titanium dioxide (TiO2). The porphyrin photoabsorption antenna efficiently extended the absorption range of TiO2 in the visible region, while anatase TiO2 promoted the efficient electron-hole separation of porphyrin. The photo-induced electrons were transferred to the surface of the Pt co-catalyst for the generation of hydrogen via water splitting, and the hole was utilized for the decomposition of methyl orange dye. The hybrid structure showed greatly increased photocatalytic performance compared to the core@shell structure due to massive active sites and increased photo-generated electron output. This controlled assembly regulation provides a new approach for the fabrication of advanced, structure-dependent photocatalysts.
Collapse
Affiliation(s)
- Yisheng Liu
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xinpeng Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Gaoyang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Shuanghong Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Sudi Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Cai Qi
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mu He
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ping Shangguan
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhengqun Luo
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xi Li
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jincheng Guo
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jiajie Sun
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Jiefei Wang
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
5
|
Li C, Fang X, Zeng Q, Zeng L, Zhang B, Nie G. Ultra small gold nanoclusters supported on two-dimensional bismuth selenium nanosheets for synergistic photothermal and photodynamic tumor therapy. RSC Adv 2024; 14:24335-24344. [PMID: 39104558 PMCID: PMC11298975 DOI: 10.1039/d4ra03142c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
Two-dimensional (2D) bismuth selenium (Bi2Se3) nanosheets have exceptional surface area and superior surface modification capabilities, facilitating the effective loading of nanoprobes, metal particles, and other substances. Additionally, thiolated ultrasmall gold nanoclusters (Au NCs), distinguished by their high photoluminescent activity and modulatable surface charges, enable efficient loading onto the 2D Bi2Se3 surfaces. In this study, we successfully prepared Bi2Se3 nanosheets by sonication-assisted liquid phase exfoliation and loaded Au clusters on their surface through an amide bond reaction. The loading of Au NCs significantly augments the photothermal and photocatalytic capabilities of Bi2Se3 nanosheets and exhibits obvious anti-cancer therapeutic effects through in vitro and in vivo experiments. In summary, the as-prepared AuNC@Bi2Se3 nanocomposites showed combined near-infrared light-initiated photothermal/photodynamic therapy (PTT/PDT) against tumors, demonstrating their potential as novel theranostic agents for biomedical applications.
Collapse
Affiliation(s)
- Chenxi Li
- Graduate Collaborative Training Base of Shenzhen Second People's Hospital, Heng Yang Medical School, University of South China Hengyang Hunan 421001 China
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| | - Xueyang Fang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| | - Qingdong Zeng
- Graduate Collaborative Training Base of Shenzhen Second People's Hospital, Heng Yang Medical School, University of South China Hengyang Hunan 421001 China
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| | - Li Zeng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| |
Collapse
|
6
|
Wang H, Wang F, Zhang S, Shen J, Zhu X, Cui Y, Li P, Lin C, Li X, Xiao Q, Luo W. Ice-Templated Synthesis of Atomic Cluster Cocatalyst with Regulable Coordination Number for Enhanced Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400764. [PMID: 38415407 DOI: 10.1002/adma.202400764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Supported metal catalysts have been exploited in various applications. Among them, cocatalyst supported on photocatalyst is essential for activation of photocatalysis. However, cocatalyst decoration in a controllable fashion to promote intrinsic activity remains challenging. Herein, a versatile method is developed for cocatalyst synthesis using an ice-templating (ICT) strategy, resulting in size control from single-atom (SA), and atomic clusters (AC) to nanoparticles (NP). Importantly, the coordination numbers (CN) of decorated AC cocatalysts are highly controllable, and this ICT method applies to various metals and photocatalytic substrates. Taking narrow-band gap Ga-doped La5Ti2Cu0.9Ag0.1O7S5 (LTCA) photocatalyst as an example, supported Ru AC/LTCA catalysts with regulable Ru CNs have been prepared, delivering significantly enhanced activities compared to Ru SA and Ru NPs supported on LTCA. Specifically, Ru(CN = 3.4) AC/LTCA with an average CN of Ru─Ru bond measured to be ≈3.4 exhibits excellent photocatalytic H2 evolution rate (578 µmol h-1) under visible light irradiation. Density functional theory calculation reveals that the modeled Ru(CN = 3) atomic cluster cocatalyst possesses favorable electronic properties and available active sites for the H2 evolution reaction.
Collapse
Affiliation(s)
- Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Fan Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shengjia Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jing Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaolin Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yuanyuan Cui
- Shimadzu (China) Co., Ltd., Shanghai, 200233, P. R. China
| | - Pengfei Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- National Energy R&D Center for Coal to Liquid Fuels, Synfuels China Technology Co., Ltd, Beijing, 101407, P. R. China
| | - Chao Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qi Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
7
|
Lv K, Hou M, Kou Y, Yu H, Liu M, Zhao T, Shen J, Huang X, Zhang J, Mady MF, Elzatahry AA, Li X, Zhao D. Black Titania Janus Mesoporous Nanomotor for Enhanced Tumor Penetration and Near-Infrared Light-Triggered Photodynamic Therapy. ACS NANO 2024; 18:13910-13923. [PMID: 38752679 DOI: 10.1021/acsnano.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Thanks to their excellent photoelectric characteristics to generate cytotoxic reactive oxygen species (ROS) under the light-activation process, TiO2 nanomaterials have shown significant potential in photodynamic therapy (PDT) for solid tumors. Nevertheless, the limited penetration depth of TiO2-based photosensitizers and excitation sources (UV/visible light) for PDT remains a formidable challenge when confronted with complex tumor microenvironments (TMEs). Here, we present a H2O2-driven black TiO2 mesoporous nanomotor with near-infrared (NIR) light absorption capability and autonomous navigation ability, which effectively enhances solid tumor penetration in NIR light-triggered PDT. The nanomotor was rationally designed and fabricated based on the Janus mesoporous nanostructure, which consists of a NIR light-responsive black TiO2 nanosphere and an enzyme-modified periodic mesoporous organosilica (PMO) nanorod that wraps around the TiO2 nanosphere. The overexpressed H2O2 can drive the nanomotor in the TME under catalysis of catalase in the PMO domain. By precisely controlling the ratio of TiO2 and PMO compartments in the Janus nanostructure, TiO2&PMO nanomotors can achieve optimal self-propulsive directionality and velocity, enhancing cellular uptake and facilitating deep tumor penetration. Additionally, by the decomposition of endogenous H2O2 within solid tumors, these nanomotors can continuously supply oxygen to enable highly efficient ROS production under the NIR photocatalysis of black TiO2, leading to intensified PDT effects and effective tumor inhibition.
Collapse
Affiliation(s)
- Kexin Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mengmeng Hou
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yufang Kou
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongyue Yu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mengli Liu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jiacheng Shen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xirui Huang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jie Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mohamed F Mady
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Ahmed A Elzatahry
- Department of Physics and Materials Science, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Xiaomin Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
8
|
Ling H, Sun M, Han H, Lu L, Cai L, Lan Y, Li R, Chen P, Tian X, Bai X, Wang W. High-Entropy Lithium Niobate Nanocubes for Photocatalytic Water Splitting under Visible Light. J Phys Chem Lett 2024:5103-5111. [PMID: 38708945 DOI: 10.1021/acs.jpclett.4c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The vast compositional space available in high-entropy oxide semiconductors offers unique opportunities for electronic band structure engineering in an unprecedented large room. In this work, with wide band gap semiconductor lithium niobate (LiNbO3) as a model system, we show that the substitutional addition of high-entropy metal cation mixtures within the Nb sublattice can lead to the formation of a single-phase solid solution featuring a substantially narrowed band gap and intense broadband visible light absorption. The resulting high-entropy LiNbO3 [denoted as Li(HE)O3] crystallizes as well-faceted nanocubes; atomic-resolution imaging and elemental mapping via transmission electron microscopy unveil a distinct local chemical complexity and lattice distortion, characteristics of high-entropy stabilized solid solution phases. Because of the presence of high-entropy stabilized Co2+ dopants that serve as active catalytic sites, Li(HE)O3 nanocubes can accomplish the visible light-driven photocatalytic water splitting in an aqueous solution containing methanol as a sacrificial electron donor without the need of any additional co-catalysts.
Collapse
Affiliation(s)
- Hao Ling
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hongbo Han
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lisha Lu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lejuan Cai
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yingying Lan
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Renjie Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Pan Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuezeng Tian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlong Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
9
|
García-Romeral N, Keyhanian M, Morales-García Á, Viñes F, Illas F. Understanding the Chemical Bond in Semiconductor/MXene Composites: TiO 2 Clusters Anchored on the Ti 2C MXene Surface. Chemistry 2024; 30:e202400255. [PMID: 38251957 DOI: 10.1002/chem.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/23/2024]
Abstract
First-principles calculations on titania clusters (TiO2)n (n=5 and 10) supported on the pristine Ti2C (0001) surface were carried out to understand the properties of semiconductor/MXene composites with implications in (photo)-catalysis. The reported results reveal a high exothermic interaction accompanied by a substantial charge transfer with a concomitant, notorious, deformation of the titania nanoclusters. The analysis of the density of states analysis of the composite systems evidences a metallic character with titania related states crossing the Fermi level. The picture of the chemical bonds is completed by the analysis of X-Ray Photoelectron Spectra (XPS) features, evidencing clear shifts of the C(1s) and O(1s) related peaks relative to the isolated systems that have a quite complex origin. This detailed analysis provides insights to experimentalists interested in the design and synthesis of these systems with possible applications in catalysis.
Collapse
Affiliation(s)
- Néstor García-Romeral
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Masoomeh Keyhanian
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|