1
|
Ma Z, Arredondo-López A, Wrona J, Herrero-Martín J, Langer J, Berthold O, Pellicer E, Menéndez E, Sort J. Magneto-Ionic Engineering of Antiferromagnetically RKKY-Coupled Multilayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415393. [PMID: 40109175 DOI: 10.1002/adma.202415393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Voltage-driven ion motion offers a powerful means to modulate magnetism and spin phenomena in solids, a process known as magneto-ionics, which holds great promise for developing energy-efficient next-generation micro- and nano-electronic devices. Synthetic antiferromagnets (SAFs), consisting of two ferromagnetic layers coupled antiferromagnetically via a thin non-magnetic spacer, offer advantages such as enhanced thermal stability, robustness against external magnetic fields, and reduced magnetostatic interactions in magnetic tunnel junctions. Despite its technological potential, magneto-ionic control of antiferromagnetic coupling in multilayers (MLs) has only recently been explored and remains poorly understood, particularly in systems free of platinum-group metals. In this work, room-temperature voltage control of Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions in Co/Ni-based SAFs is achieved. Transitions between ferrimagnetic (uncompensated) and antiferromagnetic (fully compensated) states is observed, as well as significant modulation of the RKKY bias field offset, emergence of additional switching events, and formation of skyrmion-like or pinned domain bubbles under relatively low gating voltages. These phenomena are attributed to voltage-driven oxygen migration in the MLs, as confirmed through microscopic and spectroscopic analyses. This study underscores the potential of voltage-triggered ion migration as a versatile tool for post-synthesis tuning of magnetic multilayers, with potential applications in magnetic-field sensing, energy-efficient memories and spintronics.
Collapse
Affiliation(s)
- Zheng Ma
- Departament de Física, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Aitor Arredondo-López
- Departament de Física, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Jerzy Wrona
- Singulus Technologies AG, 63796, Kahl am Main, Germany
| | | | | | | | - Eva Pellicer
- Departament de Física, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Enric Menéndez
- Departament de Física, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Jordi Sort
- Departament de Física, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
2
|
Arredondo-López A, Eiler K, Quintana A, Rius G, Spasojevic I, Salicio A, Nicolenco A, Lekka M, García-Lecina E, Brunin G, Waroquiers D, Rignanese GM, Pellicer E, Menéndez E, Sort J. Composition-Dependent Voltage-Driven OFF-ON Switching of Ferromagnetism in Co-Ni Oxide Microdisks. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9500-9513. [PMID: 39884671 PMCID: PMC11826505 DOI: 10.1021/acsami.4c15739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025]
Abstract
Magneto-ionics, which refers to the modification of the magnetic properties of materials through electric-field-induced ion migration, is emerging as one of the most promising methods to develop nonvolatile energy-efficient memory and spintronic and magnetoelectric devices. Herein, the controlled generation of ferromagnetism from paramagnetic Co-Ni oxide patterned microdisks (prepared upon thermal oxidation of metallic microdisks with dissimilar Co-Ni ratios, i.e., Ni25Co75 and Ni50Co50) is demonstrated under the action of voltage. The effect is related to the partial reduction of the oxide phases to their metallic forms. Samples richer in Co show stronger magneto-ionic activity, which manifests in lower-onset threshold voltages, faster switching rates, and larger values of the attained saturation magnetization. By means of scanning electron microscopy, a cobalt segregation phenomenon has been experimentally observed upon thermal oxidation, which has been theoretically discussed from the diffusivities' viewpoint. X-ray diffraction characterization has revealed transitions between purely mixed Ni and Co oxides, in the OFF state, to a mixture of oxide and metallic phases, in the ON state, because of the oxygen ion motion outward/inward the Co-Ni oxide microdisks, depending on the voltage polarity. Ab initio calculations reveal that the energy barrier for oxygen vacancy migration is lower in CoO than in NiO, in agreement with the obtained magneto-ionic responses. The observation of magneto-ionic effects in patterned disks (and not only in archetypical continuous films) is a step further for the practical utilization of this phenomenon in real miniaturized devices.
Collapse
Affiliation(s)
- Aitor Arredondo-López
- Departament
de Física, Universitat Autònoma
de Barcelona, Cerdanyola
del Vallès 08193, Spain
| | - Konrad Eiler
- Departament
de Física, Universitat Autònoma
de Barcelona, Cerdanyola
del Vallès 08193, Spain
| | - Alberto Quintana
- Departament
de Física, Universitat Autònoma
de Barcelona, Cerdanyola
del Vallès 08193, Spain
| | - Gemma Rius
- Instituto
de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica
(IMB-CNM, CSIC), Cerdanyola del
Vallès 08193, Spain
| | - Irena Spasojevic
- Departament
de Física, Universitat Autònoma
de Barcelona, Cerdanyola
del Vallès 08193, Spain
| | - Asier Salicio
- Basque Research
and Technology Alliance (BRTA), CIDETEC, Donostia-San Sebastián 20014, Spain
| | - Aliona Nicolenco
- Basque Research
and Technology Alliance (BRTA), CIDETEC, Donostia-San Sebastián 20014, Spain
| | - Maria Lekka
- Basque Research
and Technology Alliance (BRTA), CIDETEC, Donostia-San Sebastián 20014, Spain
| | - Eva García-Lecina
- Basque Research
and Technology Alliance (BRTA), CIDETEC, Donostia-San Sebastián 20014, Spain
| | | | | | - Gian-Marco Rignanese
- A6K Engineering
Center, MATGENIX, Charleroi 6000, Belgium
- Institute
of Condensed Matter and Nanosciences (IMCN), UCLouvain, Louvain-la-Neuve 1348, Belgium
| | - Eva Pellicer
- Departament
de Física, Universitat Autònoma
de Barcelona, Cerdanyola
del Vallès 08193, Spain
| | - Enric Menéndez
- Departament
de Física, Universitat Autònoma
de Barcelona, Cerdanyola
del Vallès 08193, Spain
| | - Jordi Sort
- Departament
de Física, Universitat Autònoma
de Barcelona, Cerdanyola
del Vallès 08193, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys
23, Barcelona 08010, Spain
| |
Collapse
|
3
|
Rajnicek AM, Casañ-Pastor N. Wireless control of nerve growth using bipolar electrodes: a new paradigm in electrostimulation. Biomater Sci 2024; 12:2180-2202. [PMID: 38358306 DOI: 10.1039/d3bm01946b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Electrical activity underpins all life, but is most familiar in the nervous system, where long range electrical signalling is essential for function. When this is lost (e.g., traumatic injury) or it becomes inefficient (e.g., demyelination), the use of external fields can compensate for at least some functional deficits. However, its potential to also promote biological repair at the cell level is underplayed despite abundant in vitro evidence for control of neuron growth. This perspective article considers specifically the emerging possibility of achieving cell growth through the interaction of external electric fields using conducting materials as unwired bipolar electrodes, and without intending stimulation of neuron electrical activity to be the primary consequence. The use of a wireless method to create electrical interactions represents a paradigm shift and may allow new applications in vivo where physical wiring is not possible. Within that scheme of thought an evaluation of specific materials and their dynamic responses as bipolar unwired electrodes is summarized and correlated with changes in dynamic nerve growth during stimulation, suggesting possible future schemes to achieve neural growth using bipolar unwired electrodes with specific characteristics. This strategy emphasizes how nerve growth can be encouraged at injury sites wirelessly to induce repair, as opposed to implanting devices that may substitute the neural signals.
Collapse
Affiliation(s)
- Ann M Rajnicek
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, United KIngdom
| | - Nieves Casañ-Pastor
- Institut de Ciència de Materials de Barcelona, CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|