1
|
Ghosh S, Kumar S, Suneesh S, Bhambri H, Mandal SK, Ghosh S, Chowdhury R, Addy PS. One-Pot Synthesis of Vinylogous Cyano Aminoaryls (VinCAs) as Benzenic Fluorophores: Tailoring Diverse Emission Colors for White Light Emitting Materials and Cell Imaging. J Org Chem 2024; 89:9303-9312. [PMID: 38752740 DOI: 10.1021/acs.joc.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Donor-acceptor-based organic small molecules with an electronic push-pull effect can demonstrate intramolecular charge transfer to show interesting photoluminescence properties. This is an essential criterion for designing fluorogenic probes for cell imaging studies and the development of organic light-emitting diodes. Now, to design such optical materials sometimes it is necessary to tune the band gap by controlling the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital. Typically, the band gaps could be modulated by installing unsaturated handles between electron-rich donors and electron-deficient acceptors. However, these methods are often synthetically and economically challenging due to the involvement of expensive catalysts and difficult reaction setups. In our present study, we show a straightforward, cost-effective method for obtaining a series of donor-acceptor-type Vinylogous Cyano Aminoaryls (VinCAs) with diverse emission colors. Further studies reveal that these VinCAs can serve as effective cell imaging agents, showcasing potential use in chemical biology. Additionally, these molecules could be further used to generate white light emission (WLE), showing their potential utility in advanced lighting technologies.
Collapse
Affiliation(s)
- Saurajit Ghosh
- Birla Institute of Technology and Science Pilani, Pilani Campus, Department of Chemistry, Pilani, Rajasthan 333031, India
| | - Shubham Kumar
- Birla Institute of Technology and Science Pilani, Pilani Campus, Department of Chemistry, Pilani, Rajasthan 333031, India
| | - Swathi Suneesh
- Birla Institute of Technology and Science Pilani, Pilani Campus, Department of Chemical Engineering, Pilani, Rajasthan 333031, India
| | - Himanshi Bhambri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Sarbani Ghosh
- Birla Institute of Technology and Science Pilani, Pilani Campus, Department of Chemical Engineering, Pilani, Rajasthan 333031, India
| | - Rajdeep Chowdhury
- Birla Institute of Technology and Science Pilani, Pilani Campus, Department of Biological Sciences, Pilani, Rajasthan 333031, India
| | - Partha Sarathi Addy
- Birla Institute of Technology and Science Pilani, Pilani Campus, Department of Chemistry, Pilani, Rajasthan 333031, India
| |
Collapse
|
2
|
Zhang Q, Wang Y, Braunstein P, Lang JP. Construction of olefinic coordination polymer single crystal platforms: precise organic synthesis, in situ exploration of reaction mechanisms and beyond. Chem Soc Rev 2024; 53:5227-5263. [PMID: 38597808 DOI: 10.1039/d3cs01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Olefin [2+2] photocycloaddition reactions based on coordination-bond templates provide numerous advantages for the selective synthesis of cyclobutane compounds. This review outlines the recent advances in the design and construction of single crystal platforms of olefinic coordination polymers for precise organic synthesis, in situ exploration of reaction mechanisms, and possible developments as comprehensively as possible. Numerous examples are presented to illustrate how the arrangements of the olefin pairs influence the solid-state photoreactivity and examine the types of cyclobutane products. Furthermore, the photocycloaddition reaction mechanisms are investigated by combining advanced techniques such as single crystal X-ray diffraction, powder X-ray diffraction, nuclear magnetic resonance, infrared spectroscopy, fluorescence spectroscopy, laser scanning confocal microscopy and theoretical calculations. Finally, potential applications resulting from promising physicochemical properties before and after photoreactions are discussed, and existing challenges and possible solutions are also proposed.
Collapse
Affiliation(s)
- Qiaoqiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal - CS 90032, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Wang L, Qiao SB, Chen YT, Ma X, Wei WM, Zhang J, Du L, Zhao QH. [2 + 2] cycloaddition and its photomechanical effects on 1D coordination polymers with reversible amide bonds and coordination site regulation. Chem Sci 2024; 15:3971-3979. [PMID: 38487230 PMCID: PMC10935725 DOI: 10.1039/d3sc06098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/04/2024] [Indexed: 03/17/2024] Open
Abstract
Photo-responsive materials can convert light energy into mechanical energy, with great application potential in biomedicine, flexible electronic devices, and bionic systems. We combined reversible amide bonds, coordination site regulation, and coordination polymer (CP) self-assembly to synthesize two 1D photo-responsive CPs. Obvious photomechanical behavior was observed under UV irradiation. By combining the CPs with PVA, the mechanical stresses were amplified and macroscopic driving behavior was realized. In addition, two cyclobutane amide derivatives and a pair of cyclobutane carboxyl isomers were isolated through coordination bond destruction and amide bond hydrolysis. Therefore, photo-actuators and supramolecular synthesis in smart materials may serve as important clues.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University 650500 People's Republic of China
| | - Si-Bo Qiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University 650500 People's Republic of China
| | - Yan-Ting Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University 650500 People's Republic of China
| | - Xun Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University 650500 People's Republic of China
| | - Wei-Ming Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University 650500 People's Republic of China
| | - Jun Zhang
- New Energy Photovoltaic Industry Research Center, Qinghai University Xining 810016 People's Republic of China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University 650500 People's Republic of China
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Pharmacy, Yunnan University 650500 People's Republic of China
| |
Collapse
|
4
|
Ekka A, Choudhury A, Samanta M, Deshmukh A, Halcovitch NR, Park IH, Medishetty R. Solid-State [2+2] Photoreaction of Isostructural Cd(II) Metal Complexes and Solid-State Fluorescence. Molecules 2024; 29:351. [PMID: 38257264 PMCID: PMC10820883 DOI: 10.3390/molecules29020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
A green method to synthesize cyclobutane derivatives has been developed over the past three decades in the form of solid-state [2+2] photochemical reactions. These solid-state reactions also play a major role in the structural transformation of hybrid materials. In this regard, crystal engineering has played a major role in designing photoreactive molecular systems. Here, we report three novel binuclear Cd(II) complexes with the molecular formula [Cd2(4spy)4L4], where 4spy = 4-styryl pyridine and L = p-toluate (1); 4-fluorobenzoate (2); and 3-fluorobenzoate (3). Although three different benzoates are used, all three complexes are isostructural, as corroborated through SCXRD experiments. Structural analysis also helped in identifying two potential photoreactions. These are both intra- and intermolecular in nature and are driven by the head-to-head (HH) and head-to-tail (HT) alignment of 4spy linkers within these metal complexes. 1H NMR spectroscopy studies showed evidence of a quantitative head-to-head photoreaction in all these three complexes, and SCXRD analysis of the recrystallization of the photoproducts also provided confirmation. TGA studies of these photoreactive complexes showed an increase in the thermal stability of the complexes due to the solid-state photoreaction. Photoluminescence studies of these complexes have been conducted, showing a blue shift in emission spectra across all three cases after the photoreaction.
Collapse
Affiliation(s)
- Akansha Ekka
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491001, India (A.C.)
| | - Aditya Choudhury
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491001, India (A.C.)
| | - Madhumita Samanta
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491001, India (A.C.)
| | - Ayushi Deshmukh
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491001, India (A.C.)
| | | | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Raghavender Medishetty
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491001, India (A.C.)
| |
Collapse
|