1
|
Galivondzhyan A, Sutormin D, Panteleev V, Kulbachinskiy A, Severinov K. The role of prokaryotic argonautes in resistance to type II topoisomerases poison ciprofloxacin. Biochem Soc Trans 2024; 52:2157-2166. [PMID: 39446311 PMCID: PMC11555693 DOI: 10.1042/bst20240094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 11/01/2024]
Abstract
Argonaute proteins are programmable nucleases found in all domains of life. Eukaryotic argonautes (eAgos) participate in genetic regulation, antiviral response, and transposon silencing during RNA interference. Prokaryotic argonautes (pAgos) are much more diverse than eAgos and have been implicated in defense against invading genetic elements. Recently, it was shown that pAgos protect bacterial cells from a topoisomerase poison ciprofloxacin, raising a possibility that they may play a role in DNA replication and/or repair. Here, we discuss possible models of pAgo-mediated ciprofloxacin resistance. We propose that pAgos could (i) participate in chromosome decatenation as a backup to topoisomerases; (ii) participate in the processing of DNA repair intermediates formed after topoisomerase poisoning, or (iii) induce SOS response that generally affects DNA repair and antibiotic resistance. These hypotheses should guide future investigations of the involvement of pAgos in the emergence of resistance to ciprofloxacin and, possibly, other antibiotics.
Collapse
Affiliation(s)
- Alina Galivondzhyan
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Molecular and Cellular Biology, Moscow, Russia
| | | | - Vladimir Panteleev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| |
Collapse
|
2
|
Cui N, Zhang JT, Li Z, Wei XY, Wang J, Jia N. Tetramerization-dependent activation of the Sir2-associated short prokaryotic Argonaute immune system. Nat Commun 2024; 15:8610. [PMID: 39366953 PMCID: PMC11452484 DOI: 10.1038/s41467-024-52910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Eukaryotic Argonaute proteins (eAgos) utilize short nucleic acid guides to target complementary sequences for RNA silencing, while prokaryotic Agos (pAgos) provide immunity against invading plasmids or bacteriophages. The Sir2-domain associated short pAgo (SPARSA) immune system defends against invaders by depleting NAD+ and triggering cell death. However, the molecular mechanism underlying SPARSA activation remains unknown. Here, we present cryo-EM structures of inactive monomeric, active tetrameric and active NAD+-bound tetrameric SPARSA complexes, elucidating mechanisms underlying SPARSA assembly, guide RNA preference, target ssDNA-triggered SPARSA tetramerization, and tetrameric-dependent NADase activation. Short pAgos form heterodimers with Sir2-APAZ, favoring short guide RNA with a 5'-AU from ColE-like plasmids. RNA-guided recognition of the target ssDNA triggers SPARSA tetramerization via pAgo- and Sir2-mediated interactions. The resulting tetrameric Sir2 rearrangement aligns catalytic residue H186 for NAD+ hydrolysis. These insights advance our understanding of Sir2-domain associated pAgos immune systems and should facilitate the development of a short pAgo-associated biotechnological toolbox.
Collapse
Affiliation(s)
- Ning Cui
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun-Tao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhuolin Li
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin-Yang Wei
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ning Jia
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Zou X, Mo Z, Wang L, Chen S, Lee SY. Overcoming Bacteriophage Contamination in Bioprocessing: Strategies and Applications. SMALL METHODS 2024:e2400932. [PMID: 39359025 DOI: 10.1002/smtd.202400932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Bacteriophage contamination has a devastating impact on the viability of bacterial hosts and can significantly reduce the productivity of bioprocesses in biotechnological industries. The consequences range from widespread fermentation failure to substantial economic losses, highlighting the urgent need for effective countermeasures. Conventional prevention methods, which focus primarily on the physical removal of bacteriophages from equipment, bioprocess units, and the environment, have proven ineffective in preventing phage entry and contamination. The coevolutionary dynamics between phages and their bacterial hosts have spurred the development of a diverse repertoire of antiviral defense mechanisms within microbial communities. These naturally occurring defense strategies can be harnessed through genetic engineering to convert phage-sensitive hosts into robust, phage-resistant cell factories, providing a strategic approach to mitigate the threats posed by bacteriophages to industrial bacterial processes. In this review, an overview of the various defense strategies and immune systems that curb the propagation of bacteriophages and highlight their applications in fermentation bioprocesses to combat phage contamination is provided. Additionally, the tactics employed by phages to circumvent these defense strategies are also discussed, as preventing the emergence of phage escape mutants is a key component of effective contamination management.
Collapse
Affiliation(s)
- Xuan Zou
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Ziran Mo
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Olijslager L, Weijers D, Swarts D. Distribution of specific prokaryotic immune systems correlates with host optimal growth temperature. NAR Genom Bioinform 2024; 6:lqae105. [PMID: 39165676 PMCID: PMC11333966 DOI: 10.1093/nargab/lqae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Prokaryotes encode an arsenal of highly diverse immune systems to protect themselves against invading nucleic acids such as viruses, plasmids and transposons. This includes invader-interfering systems that neutralize invaders to protect their host, and abortive-infection systems, which trigger dormancy or cell death in their host to offer population-level immunity. Most prokaryotic immune systems are found across different environments and prokaryotic phyla, but their distribution appears biased and the factors that influence their distribution are largely unknown. Here, we compared and combined the prokaryotic immune system identification tools DefenseFinder and PADLOC to obtain an expanded view of the immune system arsenal. Our results show that the number of immune systems encoded is positively correlated with genome size and that the distribution of specific immune systems is linked to phylogeny. Furthermore, we reveal that certain invader-interfering systems are more frequently encoded by hosts with a relatively high optimum growth temperature, while abortive-infection systems are generally more frequently encoded by hosts with a relatively low optimum growth temperature. Combined, our study reveals several factors that correlate with differences in the distribution of prokaryotic immune systems and extends our understanding of how prokaryotes protect themselves from invaders in different environments.
Collapse
Affiliation(s)
- Lisa H Olijslager
- Laboratory of Biochemistry, Wageningen University, Wageningen, Stippeneng 4, 6708WE, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, Stippeneng 4, 6708WE, the Netherlands
| | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, Wageningen, Stippeneng 4, 6708WE, the Netherlands
| |
Collapse
|
5
|
Cheng F, Wu A, Li Z, Xu J, Cao X, Yu H, Liu Z, Wang R, Han W, Xiang H, Li M. Catalytically active prokaryotic Argonautes employ phospholipase D family proteins to strengthen immunity against different genetic invaders. MLIFE 2024; 3:403-416. [PMID: 39359674 PMCID: PMC11442185 DOI: 10.1002/mlf2.12138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 10/04/2024]
Abstract
Prokaryotic Argonautes (pAgos) provide bacteria and archaea with immunity against plasmids and viruses. Catalytically active pAgos utilize short oligonucleotides as guides to directly cleave foreign nucleic acids, while inactive pAgos lacking catalytic residues employ auxiliary effectors, such as nonspecific nucleases, to trigger abortive infection upon detection of foreign nucleic acids. Here, we report a unique group of catalytically active pAgo proteins that frequently associate with a phospholipase D (PLD) family protein. We demonstrate that this particular system employs the catalytic center of the associated PLD protein rather than that of pAgo to restrict plasmid DNA, while interestingly, its immunity against a single-stranded DNA virus relies on the pAgo catalytic center and is enhanced by the PLD protein. We also find that this system selectively suppresses viral DNA propagation without inducing noticeable abortive infection outcomes. Moreover, the pAgo protein alone enhances gene editing, which is unexpectedly inhibited by the PLD protein. Our data highlight the ability of catalytically active pAgo proteins to employ auxiliary proteins to strengthen the targeted eradication of different genetic invaders and underline the trend of PLD nucleases to participate in host immunity.
Collapse
Affiliation(s)
- Feiyue Cheng
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Aici Wu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
| | - Zhihua Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
| | - Jing Xu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
| | - Xifeng Cao
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing China
| | - Zhenquan Liu
- College of Life Science University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing China
| | - Rui Wang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory Huazhong Agricultural University Wuhan China
| | - Hua Xiang
- College of Life Science University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing China
| | - Ming Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
6
|
Agapov A, Panteleev V, Kropocheva E, Kanevskaya A, Esyunina D, Kulbachinskiy A. Prokaryotic Argonaute nuclease cooperates with co-encoded RNase to acquire guide RNAs and target invader DNA. Nucleic Acids Res 2024; 52:5895-5911. [PMID: 38716875 PMCID: PMC11162769 DOI: 10.1093/nar/gkae345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 06/11/2024] Open
Abstract
Argonautes are an evolutionary conserved family of programmable nucleases that identify target nucleic acids using small guide oligonucleotides. In contrast to eukaryotic Argonautes (eAgos) that act on RNA, most studied prokaryotic Argonautes (pAgos) recognize DNA targets. Similarly to eAgos, pAgos can protect prokaryotic cells from invaders, but the biogenesis of guide oligonucleotides that confer them specificity to their targets remains poorly understood. Here, we have identified a new group of RNA-guided pAgo nucleases and demonstrated that a representative pAgo from this group, AmAgo from the mesophilic bacterium Alteromonas macleodii, binds guide RNAs of varying lengths for specific DNA targeting. Unlike most pAgos and eAgos, AmAgo is strictly specific to hydroxylated RNA guides containing a 5'-adenosine. AmAgo and related pAgos are co-encoded with a conserved RNA endonuclease from the HEPN superfamily (Ago-associated protein, Agap-HEPN). In vitro, Agap cleaves RNA between guanine and adenine nucleotides producing hydroxylated 5'-A guide oligonucleotides bound by AmAgo. In vivo, Agap cooperates with AmAgo in acquiring guide RNAs and counteracting bacteriophage infection. The AmAgo-Agap pair represents the first example of a pAgo system that autonomously produces RNA guides for DNA targeting and antiviral defense, which holds promise for programmable DNA targeting in biotechnology.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir Panteleev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | | | - Anna Kanevskaya
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Daria Esyunina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | |
Collapse
|
7
|
Bravo JPK, Ramos DA, Fregoso Ocampo R, Ingram C, Taylor DW. Plasmid targeting and destruction by the DdmDE bacterial defence system. Nature 2024; 630:961-967. [PMID: 38740055 PMCID: PMC11649018 DOI: 10.1038/s41586-024-07515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Although eukaryotic Argonautes have a pivotal role in post-transcriptional gene regulation through nucleic acid cleavage, some short prokaryotic Argonaute variants (pAgos) rely on auxiliary nuclease factors for efficient foreign DNA degradation1. Here we reveal the activation pathway of the DNA defence module DdmDE system, which rapidly eliminates small, multicopy plasmids from the Vibrio cholerae seventh pandemic strain (7PET)2. Through a combination of cryo-electron microscopy, biochemistry and in vivo plasmid clearance assays, we demonstrate that DdmE is a catalytically inactive, DNA-guided, DNA-targeting pAgo with a distinctive insertion domain. We observe that the helicase-nuclease DdmD transitions from an autoinhibited, dimeric complex to a monomeric state upon loading of single-stranded DNA targets. Furthermore, the complete structure of the DdmDE-guide-target handover complex provides a comprehensive view into how DNA recognition triggers processive plasmid destruction. Our work establishes a mechanistic foundation for how pAgos utilize ancillary factors to achieve plasmid clearance, and provides insights into anti-plasmid immunity in bacteria.
Collapse
Affiliation(s)
- Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Institute of Science and Technology Austria (ISTA), Klosterneuberg, Austria.
| | - Delisa A Ramos
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Caiden Ingram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, Austin, TX, USA
| |
Collapse
|
8
|
Zongo PD, Cabanel N, Royer G, Depardieu F, Hartmann A, Naas T, Glaser P, Rosinski-Chupin I. An antiplasmid system drives antibiotic resistance gene integration in carbapenemase-producing Escherichia coli lineages. Nat Commun 2024; 15:4093. [PMID: 38750030 PMCID: PMC11096173 DOI: 10.1038/s41467-024-48219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Plasmids carrying antibiotic resistance genes (ARG) are the main mechanism of resistance dissemination in Enterobacterales. However, the fitness-resistance trade-off may result in their elimination. Chromosomal integration of ARGs preserves resistance advantage while relieving the selective pressure for keeping costly plasmids. In some bacterial lineages, such as carbapenemase producing sequence type ST38 Escherichia coli, most ARGs are chromosomally integrated. Here we reproduce by experimental evolution the mobilisation of the carbapenemase blaOXA-48 gene from the pOXA-48 plasmid into the chromosome. We demonstrate that this integration depends on a plasmid-induced fitness cost, a mobile genetic structure embedding the ARG and a novel antiplasmid system ApsAB actively involved in pOXA-48 destabilization. We show that ApsAB targets high and low-copy number plasmids. ApsAB combines a nuclease/helicase protein and a novel type of Argonaute-like protein. It belongs to a family of defense systems broadly distributed among bacteria, which might have a strong ecological impact on plasmid diffusion.
Collapse
Affiliation(s)
- Pengdbamba Dieudonné Zongo
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Sorbonne Université, Paris, France
- Université Paris Cité, Paris, France
| | - Nicolas Cabanel
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Guilhem Royer
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Florence Depardieu
- Université Paris Cité, Paris, France
- Synthetic Biology Unit, Institut Pasteur, Paris, France
| | - Alain Hartmann
- UMR AgroEcologie 1347, INRAe, Université Bourgogne Franche-Comté, Dijon, France
| | - Thierry Naas
- Team ReSIST, INSERM UMR 1184, Paris-Saclay University, Le Kremlin-Bicêtre, France
- Department of Bacteriology-Hygiene, Bicêtre Hospital, APHP, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Isabelle Rosinski-Chupin
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
9
|
Prostova M, Kanevskaya A, Panteleev V, Lisitskaya L, Perfilova Tugaeva KV, Sluchanko NN, Esyunina D, Kulbachinskiy A. DNA-targeting short Argonautes complex with effector proteins for collateral nuclease activity and bacterial population immunity. Nat Microbiol 2024; 9:1368-1381. [PMID: 38622379 DOI: 10.1038/s41564-024-01654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Two prokaryotic defence systems, prokaryotic Argonautes (pAgos) and CRISPR-Cas, detect and cleave invader nucleic acids using complementary guides and the nuclease activities of pAgo or Cas proteins. However, not all pAgos are active nucleases. A large clade of short pAgos bind nucleic acid guides but lack nuclease activity, suggesting a different mechanism of action. Here we investigate short pAgos associated with a putative effector nuclease, NbaAgo from Novosphingopyxis baekryungensis and CmeAgo from Cupriavidus metallidurans. We show that these pAgos form a heterodimeric complex with co-encoded effector nucleases (short prokaryotic Argonaute, DNase and RNase associated (SPARDA)). RNA-guided target DNA recognition unleashes the nuclease activity of SPARDA leading to indiscriminate collateral cleavage of DNA and RNA. Activation of SPARDA by plasmids or phages results in degradation of cellular DNA and cell death or dormancy, conferring target-specific population protection and expanding the range of known prokaryotic immune systems.
Collapse
Affiliation(s)
- Maria Prostova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Anna Kanevskaya
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | - Lidia Lisitskaya
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kristina V Perfilova Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Daria Esyunina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
10
|
Lu X, Xiao J, Wang L, Zhu B, Huang F. The nuclease-associated short prokaryotic Argonaute system nonspecifically degrades DNA upon activation by target recognition. Nucleic Acids Res 2024; 52:844-855. [PMID: 38048327 PMCID: PMC10810196 DOI: 10.1093/nar/gkad1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Prokaryotic Argonautes (pAgos) play a vital role in host defense by utilizing short nucleic acid guides to recognize and target complementary nucleic acids. Despite being the majority of pAgos, short pAgos have only recently received attention. Short pAgos are often associated with proteins containing an APAZ domain and a nuclease domain including DUF4365, SMEK, or HNH domain. In contrast to long pAgos that specifically cleave the target DNA, our study demonstrates that the short pAgo from Thermocrispum municipal, along with its associated DUF4365-APAZ protein, forms a heterodimeric complex. Upon RNA-guided target DNA recognition, this complex is activated to nonspecifically cleave DNA. Additionally, we found that the TmuRE-Ago complex shows a preference for 5'-OH guide RNA, specifically requires a uridine nucleotide at the 5' end of the guide RNA, and is sensitive to single-nucleotide mismatches between the guide RNA and target DNA. Based on its catalytic properties, our study has established a novel nucleic acid detection method and demonstrated its feasibility. This study not only expands our understanding of the defense mechanism employed by short pAgo systems but also suggests their potential applications in nucleic acid detection.
Collapse
Affiliation(s)
- Xueling Lu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jun Xiao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Longfei Wang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518063, China
| | - Fengtao Huang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
11
|
Wang C, Shen Z, Yang XY, Fu TM. Structures and functions of short argonautes. RNA Biol 2024; 21:1-7. [PMID: 39219231 PMCID: PMC11370952 DOI: 10.1080/15476286.2024.2380948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Argonaute proteins (Agos) represent a highly conserved family of proteins prevalent in all domains of life and have been implicated in various biological processes. Based on the domain architecture, Agos can be divided into long Agos and short Agos. While long Agos have been extensively studied over the past two decades, short Agos, found exclusively in prokaryotes, have recently gained attention for their roles in prokaryotic immune defence against mobile genetic elements, such as plasmids and phages. Notable functional and structural studies provide invaluable insights into the underlying molecular mechanisms of representative short Ago systems. Despite the diverse domain arrangements, short Agos generally form heterodimeric complexes with their associated effector proteins, activating the effector's enzymatic activities upon target detection. The activation of effector proteins in the short Ago systems leads to bacterial cell death, a mechanism of sacrificing individuals to protect the community.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Zhangfei Shen
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Xiao-Yuan Yang
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Program of OSBP, The Ohio State University, Columbus, OH, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Program of OSBP, The Ohio State University, Columbus, OH, USA
| |
Collapse
|