1
|
Maynard A, Soretić M, Treutlein B. Single-cell genomic profiling to study regeneration. Curr Opin Genet Dev 2024; 87:102231. [PMID: 39053027 DOI: 10.1016/j.gde.2024.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Regenerative capacities and strategies vary dramatically across animals, as well as between cell types, organs, and with age. In recent years, high-throughput single-cell transcriptomics and other single-cell profiling technologies have been applied to many animal models to gain an understanding of the cellular and molecular mechanisms underlying regeneration. Here, we review recent single-cell studies of regeneration in diverse contexts and summarize key concepts that have emerged. The immense regenerative capacity of some invertebrates, exemplified by planarians, is driven mainly by the differentiation of abundant adult pluripotent stem cells, whereas in many other cases, regeneration involves the reactivation of embryonic or developmental gene-regulatory networks in differentiated cell types. However, regeneration also differs from development in many ways, including the use of regeneration-specific cell types and gene regulatory networks.
Collapse
Affiliation(s)
- Ashley Maynard
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Mateja Soretić
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Barbara Treutlein
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland.
| |
Collapse
|
2
|
Lee JR, Boothe T, Mauksch C, Thommen A, Rink JC. Epidermal turnover in the planarian Schmidtea mediterranea involves basal cell extrusion and intestinal digestion. Cell Rep 2024; 43:114305. [PMID: 38906148 DOI: 10.1016/j.celrep.2024.114305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 05/15/2024] [Indexed: 06/23/2024] Open
Abstract
Planarian flatworms undergo continuous internal turnover, wherein old cells are replaced by the division progeny of adult pluripotent stem cells (neoblasts). How cell turnover is carried out at the organismal level remains an intriguing question in planarians and other systems. While previous studies have predominantly focused on neoblast proliferation, little is known about the processes that mediate cell loss during tissue homeostasis. Here, we use the planarian epidermis as a model to study the mechanisms of cell removal. We established a covalent dye-labeling assay and image analysis pipeline to quantify the cell turnover rate in the planarian epidermis. Our findings indicate that the ventral epidermis is highly dynamic and epidermal cells undergo internalization via basal extrusion, followed by a relocation toward the intestine and ultimately digestion by intestinal phagocytes. Overall, our study reveals a complex homeostatic process of cell clearance that may generally allow planarians to catabolize their own cells.
Collapse
Affiliation(s)
- Jun-Ru Lee
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | - Tobias Boothe
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Clemens Mauksch
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Albert Thommen
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
3
|
Fortner A, Bucur O. Multiplexed spatial transcriptomics methods and the application of expansion microscopy. Front Cell Dev Biol 2024; 12:1378875. [PMID: 39105173 PMCID: PMC11298486 DOI: 10.3389/fcell.2024.1378875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/10/2024] [Indexed: 08/07/2024] Open
Abstract
While spatial transcriptomics has undeniably revolutionized our ability to study cellular organization, it has driven the development of a great number of innovative transcriptomics methods, which can be classified into in situ sequencing (ISS) methods, in situ hybridization (ISH) techniques, and next-generation sequencing (NGS)-based sequencing with region capture. These technologies not only refine our understanding of cellular processes, but also open up new possibilities for breakthroughs in various research domains. One challenge of spatial transcriptomics experiments is the limitation of RNA detection due to optical crowding of RNA in the cells. Expansion microscopy (ExM), characterized by the controlled enlargement of biological specimens, offers a means to achieve super-resolution imaging, overcoming the diffraction limit inherent in conventional microscopy and enabling precise visualization of RNA in spatial transcriptomics methods. In this review, we elaborate on ISS, ISH and NGS-based spatial transcriptomic protocols and on how performance of these techniques can be extended by the combination of these protocols with ExM. Moving beyond the techniques and procedures, we highlight the broader implications of transcriptomics in biology and medicine. These include valuable insight into the spatial organization of gene expression in cells within tissues, aid in the identification and the distinction of cell types and subpopulations and understanding of molecular mechanisms and intercellular changes driving disease development.
Collapse
Affiliation(s)
- Andra Fortner
- Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Genomics Research and Development Institute, Bucharest, Romania
| |
Collapse
|
4
|
Álvarez-Campos P, García-Castro H, Emili E, Pérez-Posada A, Del Olmo I, Peron S, Salamanca-Díaz DA, Mason V, Metzger B, Bely AE, Kenny NJ, Özpolat BD, Solana J. Annelid adult cell type diversity and their pluripotent cellular origins. Nat Commun 2024; 15:3194. [PMID: 38609365 PMCID: PMC11014941 DOI: 10.1038/s41467-024-47401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Many annelids can regenerate missing body parts or reproduce asexually, generating all cell types in adult stages. However, the putative adult stem cell populations involved in these processes, and the diversity of cell types generated by them, are still unknown. To address this, we recover 75,218 single cell transcriptomes of the highly regenerative and asexually-reproducing annelid Pristina leidyi. Our results uncover a rich cell type diversity including annelid specific types as well as novel types. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such as vasa, piwi and nanos homologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. We find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors, in piwi+ cells. Finally, lineage reconstruction analyses reveal computational differentiation trajectories from piwi+ cells to diverse adult types. Our data reveal the cell type diversity of adult annelids by single cell transcriptomics and suggest that a piwi+ cell population with a pluripotent stem cell signature is associated with adult cell type differentiation.
Collapse
Affiliation(s)
- Patricia Álvarez-Campos
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Helena García-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Irene Del Olmo
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sophie Peron
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - David A Salamanca-Díaz
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Vincent Mason
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Bria Metzger
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 05432, USA
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, Saint Louis, MO, 63130, USA
| | - Alexandra E Bely
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Nathan J Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand
| | - B Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 05432, USA.
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, Saint Louis, MO, 63130, USA.
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
- Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
5
|
King HO, Owusu-Boaitey KE, Fincher CT, Reddien PW. A transcription factor atlas of stem cell fate in planarians. Cell Rep 2024; 43:113843. [PMID: 38401119 PMCID: PMC11232438 DOI: 10.1016/j.celrep.2024.113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Whole-body regeneration requires the ability to produce the full repertoire of adult cell types. The planarian Schmidtea mediterranea contains over 125 cell types, which can be regenerated from a stem cell population called neoblasts. Neoblast fate choice can be regulated by the expression of fate-specific transcription factors (FSTFs). How fate choices are made and distributed across neoblasts versus their post-mitotic progeny remains unclear. We used single-cell RNA sequencing to systematically map fate choices made in S/G2/M neoblasts and, separately, in their post-mitotic progeny that serve as progenitors for all adult cell types. We defined transcription factor expression signatures associated with all detected fates, identifying numerous new progenitor classes and FSTFs that regulate them. Our work generates an atlas of stem cell fates with associated transcription factor signatures for most cell types in a complete adult organism.
Collapse
Affiliation(s)
- Hunter O King
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwadwo E Owusu-Boaitey
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Christopher T Fincher
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|