1
|
Nie S, Wu L, Liu Q, Wang X. Entropy-Derived Synthesis of the CuPd Sub-1nm Alloy for CO 2-to-acetate Electroreduction. J Am Chem Soc 2024; 146:29364-29372. [PMID: 39425939 DOI: 10.1021/jacs.4c07711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Bimetallic alloys exhibit remarkable properties in catalysis and energy storage, while their precise synthesis at the subnanoscale remains a formidable challenge due to their immiscible nature in thermodynamics. In this study, we engineer an atomically dispersed CuPd alloy with an average size of 1.5 nm loaded on CuO and phosphomolybdic acid (PMA) coassembly subnanosheets (CuO-PMA SNSs). Driven by the high vibrational entropy, Cu atoms could escape from CuO supports and bond with adjacent Pd single atoms, leading to the in situ formation of CuPd alloys. Furthermore, this strategy can also be utilized for synthesizing the ZnPt alloy with an average size of 1 nm, thereby providing a general pathway for the design of immiscible subnanoalloys. The fully exposed Cu-Pd pairs in CuPd subnanoalloys significantly enhance the adsorption and coverage of surface *CO during the electrochemical reduction of CO2, thereby leading to enhanced stability of ethenone intermediates and facilitating the production of C2 compounds. The resulting CuPd subnanoalloy exhibits a remarkable Faradaic efficiency of 46.5 ± 2.1% for CO2-to-acetate electroreduction and achieves a high acetate productivity of 99 ± 2.8 μmol cm-2 at -0.7 V versus RHE.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Yang R, Lin W, He Y, Singh M, Fan L. Revealing the detrimental CO 2 reduction effect of La 0.6Sr 0.4FeO 3-δ-derived heterostructure in solid oxide electrolysis cells. iScience 2024; 27:109648. [PMID: 38665210 PMCID: PMC11043879 DOI: 10.1016/j.isci.2024.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Solid oxide electrolysis cells hold unique Faraday efficiency and favored thermodynamic/kinetics for CO2 reduction to CO. Perovskite oxide-based composite materials are promising alternatives to Ni-based cermet electrodes in SOECs. However, contrary results of the electrocatalytic activity over single-phase perovskite oxide exist and the rationale of the negative effect is not well revealed. In this work, two-phase perovskite materials with various complementary properties and unique interfaces are self-assembled, which was realized by "subtractive" defect-driven phase separation. The obtained heterostructure electrodes showed reduced performance over that of single-phase materials although the cyclic stability was improved. The main reasons for the performance degradation are the decrease of electrical conductivity, oxygen vacancy concentration while increasing the average valence state of B-site Fe cations, and electrode surface Sr aggregation. This work highlights the self-assembly method and insight into the rational design and synthesis of active electrodes/catalysts for CO2 conversion in solid oxide cells.
Collapse
Affiliation(s)
- Rui Yang
- Department of New Energy Science & Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Wanbin Lin
- Department of New Energy Science & Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Yunjuan He
- Institute of Energy Power Innovation, North China Electric Power University, Beijing, China
| | - Manish Singh
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Bihta, Bihar 801106, India
| | - Liangdong Fan
- Department of New Energy Science & Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| |
Collapse
|
3
|
Tang Z, Shi L, Zhang K, Zhang F, Sun Y, Wang X, Yao Y, Liu X, Wang D, Xie J, Yang Z, Yan YM. Modulating the d-Band Center of Palladium via Ethylene Glycol Modification: Accelerating H ad Desorption for Enhanced Formate Electrooxidation. J Phys Chem Lett 2024:3354-3362. [PMID: 38498427 DOI: 10.1021/acs.jpclett.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
This study addresses the critical challenge in alkaline direct formate fuel cells (DFFCs) of slow formate oxidation reaction (FOR) kinetics as a result of strong hydrogen intermediate (Had) adsorption on Pd catalysts. We developed WO3-supported Pd nanoparticles (EG-Pd/WO3) via an organic reduction method using ethylene glycol (EG), aiming to modulate the d-band center of Pd and alter Had adsorption dynamics. Cyclic voltammetry demonstrated significantly improved Had desorption kinetics in EG-Pd/WO3 catalysts. Density functional theory (DFT) calculations revealed that the presence of EG reduces the d-band center of Pd, leading to weaker Pd-H bonds and enhanced Had desorption during the FOR. This research provides a new approach to optimize catalyst efficiency in DFFCs, highlighting the potential for more effective and sustainable energy solutions through advanced material engineering.
Collapse
Affiliation(s)
- Zheng Tang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lanlan Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kaixin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Feike Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanfei Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoxuan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yebo Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xia Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dewei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
4
|
Liu F, Deng H, Wang Z, Hussain AM, Dale N, Furuya Y, Miura Y, Fukuyama Y, Ding H, Liu B, Duan C. Synergistic Effects of In-Situ Exsolved Ni-Ru Bimetallic Catalyst on High-Performance and Durable Direct-Methane Solid Oxide Fuel Cells. J Am Chem Soc 2024; 146:4704-4715. [PMID: 38277126 DOI: 10.1021/jacs.3c12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Direct-methane solid oxide fuel cells (CH4-SOFCs) have gained significant attention as methane, the primary component of natural gas (NG), is cheap and widely available and the natural gas infrastructures are relatively mature. However, at intermediate temperatures (e.g., 600-650 °C), current CH4-SOFCs suffer from low performance and poor durability under a low steam-to-carbon ratio (S/C ratio), which is ascribed to the Ni-based anode that is of low catalytic activity and prone to coking. Herein, with the guidance of density functional theory (DFT) studies, a highly active and coking tolerant steam methane reforming (SMR) catalyst, Sm-doped CeO2-supported Ni-Ru (SCNR), was developed. The synergy between Ni and Ru lowers the activation energy of the first C-H bond activation and promotes CHx decomposition. Additionally, Sm doping increases the oxygen vacancy concentration in CeO2, facilitating H2O adsorption and dissociation. The SCNR can therefore simultaneously activate both CH4 and H2O molecules while oxidizing the CH* and improving coking tolerance. We then applied SCNR as the CH4-SOFC anode catalytic reforming layer. A peak power density of 733 mW cm-2 was achieved at 650 °C, representing a 55% improvement compared to that of pristine CH4-SOFCs (473 mW cm-2). Moreover, long-term durability testing, with >2000 h continuous operation, was performed under almost dry methane (5% H2O). These results highlight that CH4-SOFCs with a SCNR catalytic layer can convert NG to electricity with high efficiency and resilience.
Collapse
Affiliation(s)
- Fan Liu
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Hao Deng
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zixian Wang
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Nilesh Dale
- Nissan Technical Centre North America (NTCNA), Farmington Hills, Michigan 48331, United States
| | - Yoshihisa Furuya
- Nissan Technical Centre North America (NTCNA), Farmington Hills, Michigan 48331, United States
| | - Yohei Miura
- Nissan Research Center, Nissan Motor Company Limited, Yokosuka, Kanagawa 2378523, Japan
| | - Yosuke Fukuyama
- Nissan Research Center, Nissan Motor Company Limited, Yokosuka, Kanagawa 2378523, Japan
| | - Hanping Ding
- Department of Aerospace & Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Liu
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chuancheng Duan
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
5
|
Dang H, Song L, Wu C, Dong D, Shi G. Carbon Deposition Mitigation Strategies in Proton-Conducting Solid Oxide Fuel Cells: A Case Study with Biomass Fuels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8863-8874. [PMID: 38324381 DOI: 10.1021/acsami.3c17686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Methanol and ethanol, when used as biomass fuels, demonstrate distinct benefits compared to hydrogen in proton-conducting solid oxide fuel cells (PCFCs) applications. Nevertheless, employing these biomass fuels in PCFCs encounters a significant obstacle due to carbon deposition, adversely affecting the cells' longevity. To mitigate this issue, a dendritic pore channel anode design was implemented to optimize the fuel distribution and utilization efficiency. Additionally, the approach incorporates a co-reforming strategy of fuel and steam, operating the cell under stable output current conditions to mitigate carbon deposition in the cell. Furthermore, the integration of Ru-GDC nanofiber catalysts enhanced the cell's resistance to carbon deposition and improved its stability. Techniques such as argon and oxygen purging, along with thermal regeneration, were investigated for carbon removal. These approaches have proven to be effective in diminishing carbon buildup and restoring cell functionality. Applying these strategies, PCFCs equipped with Ru-GDC fiber catalysts, operating at a stable 700 °C current, demonstrated prolonged stability for 117 h with methanol and 96 h with ethanol, markedly surpassing the performance of untreated cells. These advancements not only alleviate carbon deposition issues in PCFCs utilizing methanol and ethanol but also enhance the potential of biomass fuels in PCFC applications.
Collapse
Affiliation(s)
- Haochen Dang
- School of Materials Science and Engineering University of Jinan, Jinan 250022, China
| | - Laizhen Song
- School of Materials Science and Engineering University of Jinan, Jinan 250022, China
| | - Chao Wu
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China
| | - Dehua Dong
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Guopu Shi
- School of Materials Science and Engineering University of Jinan, Jinan 250022, China
| |
Collapse
|