1
|
Sigalotti L, Frezza AM, Sbaraglia M, Del Savio E, Baldazzi D, Valenti B, Bellan E, De Benedictis I, Doni M, Gambarotti M, Vincenzi B, Brunello A, Baldi GG, Palmerini E, Pasquali S, Ciuffetti ME, Varano V, Cappello F, Appolloni V, Pastrello C, Jurisica I, Gronchi A, Stacchiotti S, Casali PG, Dei Tos AP, Maestro R. Proximal and Classic Epithelioid Sarcomas are Distinct Molecular Entities Defined by MYC/GATA3 and SOX17/Endothelial Markers, Respectively. Mod Pathol 2025; 38:100647. [PMID: 39491746 DOI: 10.1016/j.modpat.2024.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Epithelioid sarcoma (ES) is a rare tumor hallmarked by the loss of INI1/SMARCB1 expression. Apart from this alteration, little is known about the biology of ES. Despite recent advances in treatment, the prognosis of ES remains unsatisfactory. To elucidate the molecular underpinnings of ES, and to identify diagnostic biomarkers and potential therapeutic vulnerabilities, we performed an integrated omics profiling (RNA sequencing and methylation array) of 24 primary, untreated ESs. Transcriptome and methylome analysis identified 2 distinct molecular clusters that essentially corresponded to the morphologic variants of ES, classic ES (C-ES) and the more aggressive proximal ES (P-ES). The P-ES group was characterized by hyperactivation of GATA3 and MYC pathways, with extensive epigenetic rewiring associated with EZH2 overexpression. Both DNA methylation and gene expression analysis indicated a striking similarity with the "MYC subgroup" of atypical teratoid/rhabdoid tumor, another SMARCB1-deficient tumor, implying a shared molecular background and potential therapeutic vulnerabilities. Conversely, the C-ES group exhibited an endothelial-like molecular profile, with expression of vascular genes and elevated proangiogenic SOX17 signaling. Immunohistochemistry validated the overexpression of the chromatin regulators GATA3 (9/12 vs 0/16) and EZH2 (7/7 vs 2/6) in P-ESs, and of the vascular factors SOX17 (8/8 vs 1/10) and N-cadherin (5/9 vs 0/10) in C-ESs. Therefore, these molecules emerge as potential diagnostic tools to fill the gap represented by the lack of ES subtype-specific biomarkers. In summary, our study shows that P-ES and C-ES represent distinct molecular entities defined by MYC/GATA3 and SOX17/endothelial molecular traits, respectively. Besides providing insights into the biology of ES, our study pinpoints subtype-specific biomarkers and potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Luca Sigalotti
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Anna Maria Frezza
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marta Sbaraglia
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Elisa Del Savio
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Davide Baldazzi
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Beatrice Valenti
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Elena Bellan
- Department of Pathology, Azienda Ospedale Università Padova, Padua, Italy
| | - Ilaria De Benedictis
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Michele Doni
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Marco Gambarotti
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Università Campus Biomedico di Roma, Rome, Italy
| | - Antonella Brunello
- Department of Oncology, Medical Oncology 1 Unit, Istituto Oncologico Veneto IOV, IRCCS, Padua, Italy
| | - Giacomo Giulio Baldi
- Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sandro Pasquali
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Elena Ciuffetti
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Veronica Varano
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Filippo Cappello
- Department of Pathology, Azienda Ospedale Università Padova, Padua, Italy
| | - Viviana Appolloni
- Italian Sarcoma Group, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Pastrello
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, Toronto, Canada
| | - Igor Jurisica
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, Toronto, Canada; Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alessandro Gronchi
- Department of Sarcoma Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Stacchiotti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Giovanni Casali
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
2
|
Laisné M, Lupien M, Vallot C. Epigenomic heterogeneity as a source of tumour evolution. Nat Rev Cancer 2025; 25:7-26. [PMID: 39414948 DOI: 10.1038/s41568-024-00757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
In the past decade, remarkable progress in cancer medicine has been achieved by the development of treatments that target DNA sequence variants. However, a purely genetic approach to treatment selection is hampered by the fact that diverse cell states can emerge from the same genotype. In multicellular organisms, cell-state heterogeneity is driven by epigenetic processes that regulate DNA-based functions such as transcription; disruption of these processes is a hallmark of cancer that enables the emergence of defective cell states. Advances in single-cell technologies have unlocked our ability to quantify the epigenomic heterogeneity of tumours and understand its mechanisms, thereby transforming our appreciation of how epigenomic changes drive cancer evolution. This Review explores the idea that epigenomic heterogeneity and plasticity act as a reservoir of cell states and therefore as a source of tumour evolution. Best practices to quantify epigenomic heterogeneity and explore its various causes and consequences are discussed, including epigenomic reprogramming, stochastic changes and lasting memory. The design of new therapeutic approaches to restrict epigenomic heterogeneity, with the long-term objective of limiting cancer development and progression, is also addressed.
Collapse
Affiliation(s)
- Marthe Laisné
- CNRS UMR3244, Institut Curie, PSL University, Paris, France
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontorio, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontorio, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontorio, Canada.
| | - Céline Vallot
- CNRS UMR3244, Institut Curie, PSL University, Paris, France.
- Translational Research Department, Institut Curie, PSL University, Paris, France.
- Single Cell Initiative, Institut Curie, PSL University, Paris, France.
| |
Collapse
|
3
|
Golbourn B, Ho B, Bondoc A, Luck A, Fan X, Richardson E, Marcellus R, Prakesch M, Halbert M, Agrawal N, Smith C, Huang A, Rutka JT. A kinome drug screen identifies multi-TKI synergies and ERBB2 signaling as a therapeutic vulnerability in MYC/TYR subgroup atypical teratoid rhabdoid tumors. Neuro Oncol 2024; 26:1895-1911. [PMID: 38981018 PMCID: PMC11448967 DOI: 10.1093/neuonc/noae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor (ATRT) is a rare, devastating, and largely incurable pediatric brain tumor. Although recent studies have uncovered 3 molecular subgroups of ATRTs with distinct disease patterns, and signaling features, the therapeutic profiles of ATRT subgroups remain incompletely elucidated. METHODS We examined the effect of 465 kinase inhibitors on a panel of ATRT subgroup-specific cell lines. We then applied multiomics analyses to investigate the underlying molecular mechanism of kinase inhibitor efficacy in ATRT subgroups. RESULTS We observed that ATRT cell lines are broadly sensitive to inhibitors of the PI3K and MAPK signaling pathways, as well as CDKs, AURKA/B kinases, and polo-like kinase 1. We identified 2 classes of multikinase inhibitors predominantly targeting receptor tyrosine kinases including PDGFR and EGFR/ERBB2 in MYC/TYR ATRT cells. The PDGFRB inhibitor, Dasatinib, synergistically affected MYC/TYR ATRT cell growth when combined with broad-acting PI3K and MAPK pathway inhibitors, including Rapamycin and Trametinib. We observed that MYC/TYR ATRT cells were also distinctly sensitive to various inhibitors of ERBB2 signaling. Transcriptional, H3K27Ac ChIPSeq, ATACSeq, and HiChIP analyses of primary MYC/TYR ATRTs revealed ERBB2 expression, which correlated with differential methylation and activation of a distinct enhancer element by DNA looping. Significantly, we show the brain penetrant EGFR/ERBB2 inhibitor, Afatinib, specifically inhibited in vitro and in vivo growth of MYC/TYR ATRT cells. CONCLUSIONS Taken together, our studies suggest combined treatments with PDGFR and ERBB2-directed TKIs with inhibitors of the PI3K and MAPK pathways as an important new therapeutic strategy for the MYC/TYR subgroup of ATRTs.
Collapse
Affiliation(s)
- Brian Golbourn
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ben Ho
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew Bondoc
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Luck
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaolian Fan
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Richardson
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mathew Halbert
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nishant Agrawal
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian Smith
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - James T Rutka
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Tan WY, Nagabhyrava S, Ang-Olson O, Das P, Ladel L, Sailo B, He L, Sharma A, Ahuja N. Translation of Epigenetics in Cell-Free DNA Liquid Biopsy Technology and Precision Oncology. Curr Issues Mol Biol 2024; 46:6533-6565. [PMID: 39057032 PMCID: PMC11276574 DOI: 10.3390/cimb46070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Technological advancements in cell-free DNA (cfDNA) liquid biopsy have triggered exponential growth in numerous clinical applications. While cfDNA-based liquid biopsy has made significant strides in personalizing cancer treatment, the exploration and translation of epigenetics in liquid biopsy to clinical practice is still nascent. This comprehensive review seeks to provide a broad yet in-depth narrative of the present status of epigenetics in cfDNA liquid biopsy and its associated challenges. It highlights the potential of epigenetics in cfDNA liquid biopsy technologies with the hopes of enhancing its clinical translation. The momentum of cfDNA liquid biopsy technologies in recent years has propelled epigenetics to the forefront of molecular biology. We have only begun to reveal the true potential of epigenetics in both our understanding of disease and leveraging epigenetics in the diagnostic and therapeutic domains. Recent clinical applications of epigenetics-based cfDNA liquid biopsy revolve around DNA methylation in screening and early cancer detection, leading to the development of multi-cancer early detection tests and the capability to pinpoint tissues of origin. The clinical application of epigenetics in cfDNA liquid biopsy in minimal residual disease, monitoring, and surveillance are at their initial stages. A notable advancement in fragmentation patterns analysis has created a new avenue for epigenetic biomarkers. However, the widespread application of cfDNA liquid biopsy has many challenges, including biomarker sensitivity, specificity, logistics including infrastructure and personnel, data processing, handling, results interpretation, accessibility, and cost effectiveness. Exploring and translating epigenetics in cfDNA liquid biopsy technology can transform our understanding and perception of cancer prevention and management. cfDNA liquid biopsy has great potential in precision oncology to revolutionize conventional ways of early cancer detection, monitoring residual disease, treatment response, surveillance, and drug development. Adapting the implementation of liquid biopsy workflow to the local policy worldwide and developing point-of-care testing holds great potential to overcome global cancer disparity and improve cancer outcomes.
Collapse
Affiliation(s)
- Wan Ying Tan
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
- Hematology & Oncology, Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030, USA
| | | | - Olivia Ang-Olson
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Paromita Das
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Luisa Ladel
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
| | - Bethsebie Sailo
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Linda He
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Nita Ahuja
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520-8000, USA
- Biological and Biomedical Sciences Program (BBS), Yale University, New Haven, CT 06520-8084, USA
| |
Collapse
|
5
|
Weissmiller AM, Fesik SW, Tansey WP. WD Repeat Domain 5 Inhibitors for Cancer Therapy: Not What You Think. J Clin Med 2024; 13:274. [PMID: 38202281 PMCID: PMC10779565 DOI: 10.3390/jcm13010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
WDR5 is a conserved nuclear protein that scaffolds the assembly of epigenetic regulatory complexes and moonlights in functions ranging from recruiting MYC oncoproteins to chromatin to facilitating the integrity of mitosis. It is also a high-value target for anti-cancer therapies, with small molecule WDR5 inhibitors and degraders undergoing extensive preclinical assessment. WDR5 inhibitors were originally conceived as epigenetic modulators, proposed to inhibit cancer cells by reversing oncogenic patterns of histone H3 lysine 4 methylation-a notion that persists to this day. This premise, however, does not withstand contemporary inspection and establishes expectations for the mechanisms and utility of WDR5 inhibitors that can likely never be met. Here, we highlight salient misconceptions regarding WDR5 inhibitors as epigenetic modulators and provide a unified model for their action as a ribosome-directed anti-cancer therapy that helps focus understanding of when and how the tumor-inhibiting properties of these agents can best be understood and exploited.
Collapse
Affiliation(s)
- April M. Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA;
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Huhtala L, Karabiyik G, Rautajoki KJ. Development and epigenetic regulation of Atypical teratoid/rhabdoid tumors in the context of cell-of-origin and halted cell differentiation. Neurooncol Adv 2024; 6:vdae162. [PMID: 39465218 PMCID: PMC11502914 DOI: 10.1093/noajnl/vdae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are aggressive brain tumors primarily observed in infants. The only characteristic, recurrent genetic aberration of AT/RTs is biallelic inactivation of SMARCB1 (or SMARCA4). These genes are members of the mSWI/SNF chromatin-remodeling complex, which regulates various developmental processes, including neural differentiation. This review explores AT/RT subgroups regarding their distinct SMARCB1 loss-of-function mechanisms, molecular features, and patient characteristics. Additionally, it addresses the ongoing debate about the oncogenic relevance of cell-of-origin, examining the influence of developmental stage and lineage commitment of the seeding cell on tumor malignancy and other characteristics. Epigenetic dysregulation, particularly through the regulation of histone modifications and DNA hypermethylation, has been shown to play an integral role in AT/RTs' malignancy and differentiation blockage, maintaining cells in a poorly differentiated state via the insufficient activation of differentiation-related genes. Here, the differentiation blockage and its contribution to malignancy are also explored in a cellular context. Understanding these mechanisms and AT/RT heterogeneity is crucial for therapeutic improvements against AT/RTs.
Collapse
Affiliation(s)
- Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Goktug Karabiyik
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|