1
|
Park GT, Park NY, Ryu HH, Sun HH, Hwang JY, Sun YK. Nano-rods in Ni-rich layered cathodes for practical batteries. Chem Soc Rev 2024; 53:11462-11518. [PMID: 39380343 DOI: 10.1039/d3cs01110k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lithium transition metal oxide layers, Li[Ni1-x-yCox(Mn and/or Al)y]O2, are widely used and mass-produced for current rechargeable battery cathodes. Development of cathode materials has focused on increasing the Ni content by simply controlling the chemical composition, but as the Ni content has almost reached its limit, a new breakthrough is required. In this regard, microstructural modification is rapidly emerging as a prospective approach, namely in the production of nano-rod layered cathode materials. A comprehensive review of the physicochemical properties and electrochemical performances of cathodes bearing the nano-rod microstructure is provided herein. A detailed discussion is regarding the structural stability of the cathode, which should be maximized to suppress microcrack formation, the main cause of capacity fading in Ni-rich cathode materials. In addition, the morphological features required to achieve optimal performance are examined. Following a discussion of the initial nano-rod cathodes, which were based on compositional concentration gradients, the preparation of nano-rod cathodes without the inclusion of a concentration gradient is reviewed, highlighting the importance of the precursor. Subsequently, the challenges and advances associated with the nano-rod structure are discussed, including considerations for synthesizing nano-rod cathodes and surface shielding of the nano-rod structure. It goes on to cover nano-rod cathode materials for next-generation batteries (e.g., all-solid-state, lithium-metal, and sodium-ion batteries), inspiring the battery community and other materials scientists looking for clues to the solution of the challenges that they encounter.
Collapse
Affiliation(s)
- Geon-Tae Park
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Nam-Yung Park
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Hoon-Hee Ryu
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - H Hohyun Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Alabama 35487, USA
| | - Jang-Yeon Hwang
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea.
- Department of Battery Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea.
- Department of Battery Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
2
|
Dongol R, Mukherjee A, Bai J, van Dam HJJ, Carbone MR, Abell EF, Zhong H, Tayal A, Ma L, Kahvecioglu O, Pupek KZ, Lu D, Rajan K, Wang F. In situ Synchrotron X-ray Metrology Boosted by Automated Data Analysis for Real-time Monitoring of Cathode Calcination. SMALL METHODS 2024:e2400181. [PMID: 39246255 DOI: 10.1002/smtd.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/30/2024] [Indexed: 09/10/2024]
Abstract
Synchrotron X-ray-based in situ metrology is advantageous for monitoring the synthesis of battery materials, offering high throughput, high spatial and temporal resolution, and chemical sensitivity. However, the rapid generation of massive data poses a challenge to on-site, on-the-fly analysis needed for real-time process monitoring. Here, a weighted lagged cross-correlation (WLCC) similarity approach is presented for automated data analysis, which merges with in situ synchrotron X-ray diffraction metrology to monitor the calcination process of the archetypal nickel-based cathode, LiNiO2. The WLCC approach, incorporating variables that account for peak shifts and width changes associated with structural transformations, enables rapid extraction of phase progression within 10 seconds from tens of diffraction patterns. Details are captured, from initial precursors to intermediates and the final layered LiNiO2, providing information for agile on-site adjustments during experiments and complementing post hoc diffraction analysis by offering insights into early-stage phase nucleation and growth. Expanding this data-powered platform paves the way for real time calcination process monitoring and control, which is pivotal to quality control in battery cathode manufacturing.
Collapse
Affiliation(s)
- Ruhil Dongol
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14260, USA
| | - Arpan Mukherjee
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jianming Bai
- Energy and Photon Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hubertus J J van Dam
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Matthew R Carbone
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | - Hui Zhong
- Energy and Photon Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Akhil Tayal
- Energy and Photon Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lu Ma
- Energy and Photon Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Ozgenur Kahvecioglu
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Krzysztof Z Pupek
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Deyu Lu
- Energy and Photon Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Krishna Rajan
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14260, USA
| | - Feng Wang
- Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
3
|
Ji H, Wang J, Qu H, Li J, Ji W, Qiu X, Zhu Y, Ren H, Shi R, Ji G, Zhao W, Zhou G. Closed-Loop Direct Upcycling of Spent Ni-Rich Layered Cathodes into High-Voltage Cathode Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407029. [PMID: 39007243 DOI: 10.1002/adma.202407029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Indexed: 07/16/2024]
Abstract
Facing the resource and environmental pressures brought by the retiring wave of lithium-ion batteries (LIBs), direct recycling methods are considered to be the next generation's solution. However, the contradiction between limited battery life and the demand for rapidly iterating technology forces the direct recovery paradigm to shift toward "direct upcycling." Herein, a closed-loop direct upcycling strategy that converts waste current collector debris into dopants is proposed, and a highly inclusive eutectic molten salt system is utilized to repair structural defects in degraded polycrystalline LiNi0.83Co0.12Mn0.05O2 cathodes while achieving single-crystallization transformation and introducing Al/Cu dual-doping. Upcycled materials can effectively overcome the two key challenges at high voltages: strain accumulation and lattice oxygen evolution. It exhibits comprehensive electrochemical performance far superior to commercial materials at 4.6 V, especially its fast charging capability at 15 C, and an impressive 91.1% capacity retention after 200 cycles in a 1.2 Ah pouch cell. Importantly, this approach demonstrates broad applicability to various spent layered cathodes, particularly showcasing its value in the recycling of mixed spent cathodes. This work effectively bridges the gap between waste management and material performance enhancement, offering a sustainable path for the recycling of spent LIBs and the production of next-generation high-voltage cathodes.
Collapse
Affiliation(s)
- Haocheng Ji
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Junxiong Wang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haotian Qu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Junfeng Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wenhai Ji
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, China
| | - Yanfei Zhu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hengyu Ren
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ruyu Shi
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guanjun Ji
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenguang Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
4
|
Tayal A, Barai P, Zhong H, Kahvecioglu O, Wang X, Pupek KZ, Ma L, Ehrlich SN, Srinivasan V, Qu X, Bai J, Wang F. In Situ Insights into Cathode Calcination for Predictive Synthesis: Kinetic Crystallization of LiNiO 2 from Hydroxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312027. [PMID: 38252915 DOI: 10.1002/adma.202312027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/18/2024] [Indexed: 01/24/2024]
Abstract
Calcination is a solid-state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high-performance cathode materials. Here, correlative in situ X-ray absorption/scattering spectroscopy is used to investigate the calcination of nickel-based cathodes, focusing specifically on the archetypal LiNiO2 from Ni(OH)2. Combining in situ observation with data-driven analysis reveals concurrent lithiation and dehydration of Ni(OH)2 and consequently, the low-temperature crystallization of layered LiNiO2 alongside lithiated rocksalts. Following early nucleation, LiNiO2 undergoes sluggish crystallization and structural ordering while depleting rocksalts; ultimately, it turns into a structurally-ordered layered phase upon full lithiation but remains small in size. Subsequent high-temperature sintering induces rapid crystal growth, accompanied by undesired delithiation and structural degradation. These observations are further corroborated by mesoscale modeling, emphasizing that, even though calcination is thermally driven and favors transformation towards thermodynamically equilibrium phases, the actual phase propagation and crystallization can be kinetically tuned via lithiation, providing freedom for structural and morphological control during cathode calcination.
Collapse
Affiliation(s)
- Akhil Tayal
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Pallab Barai
- Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hui Zhong
- Joint Photon Sciences Institute, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | | | | | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Steven N Ehrlich
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | - Xiaohui Qu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jianming Bai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Feng Wang
- Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
5
|
Wang L, Huang J, Shen Y, Ma M, Ruan W, Zhang M. ARGET-ATRP-Mediated Grafting of Bifunctional Polymers onto Silica Nanoparticles Fillers for Boosting the Performance of High-Capacity All-Solid-State Lithium-Sulfur Batteries with Polymer Solid Electrolytes. Polymers (Basel) 2024; 16:1128. [PMID: 38675047 PMCID: PMC11054452 DOI: 10.3390/polym16081128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The shuttle effect in lithium-sulfur batteries, which leads to rapid capacity decay, can be effectively suppressed by solid polymer electrolytes. However, the lithium-ion conductivity of polyethylene oxide-based solid electrolytes is relatively low, resulting in low reversible capacity and poor cycling stability of the batteries. In this study, we employed the activator generated through electron transfer atom transfer radical polymerization to graft modify the surface of silica nanoparticles with a bifunctional monomer, 2-acrylamide-2-methylpropanesulfonate, which possesses sulfonic acid groups with low dissociation energy for facilitating Li+ migration and transfer, as well as amide groups capable of forming hydrogen bonds with polyethylene oxide chains. Subsequently, the modified nanoparticles were blended with polyethylene oxide to prepare a solid polymer electrolyte with low crystallinity and high ion conductivity. The resulting electrolyte demonstrated excellent and stable electrochemical performance, with a discharge-specific capacity maintained at 875.2 mAh g-1 after 200 cycles.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (L.W.); (J.H.); (Y.S.); (M.M.); (M.Z.)
| | - Junyue Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (L.W.); (J.H.); (Y.S.); (M.M.); (M.Z.)
| | - Yujian Shen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (L.W.); (J.H.); (Y.S.); (M.M.); (M.Z.)
| | - Mengqi Ma
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (L.W.); (J.H.); (Y.S.); (M.M.); (M.Z.)
| | - Wenhong Ruan
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (L.W.); (J.H.); (Y.S.); (M.M.); (M.Z.)
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Mingqiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (L.W.); (J.H.); (Y.S.); (M.M.); (M.Z.)
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| |
Collapse
|