1
|
Elafify M, Liao X, Feng J, Ahn J, Ding T. Biofilm formation in food industries: Challenges and control strategies for food safety. Food Res Int 2024; 190:114650. [PMID: 38945629 DOI: 10.1016/j.foodres.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.
Collapse
Affiliation(s)
- Mahmoud Elafify
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xinyu Liao
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhee Ahn
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Tian Ding
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Manoil D, Parga A, Bostanci N, Belibasakis GN. Microbial diagnostics in periodontal diseases. Periodontol 2000 2024; 95:176-193. [PMID: 38797888 DOI: 10.1111/prd.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Microbial analytical methods have been instrumental in elucidating the complex microbial etiology of periodontal diseases, by shaping our understanding of subgingival community dynamics. Certain pathobionts can orchestrate the establishment of dysbiotic communities that can subvert the host immune system, triggering inflammation and tissue destruction. Yet, diagnosis and management of periodontal conditions still rely on clinical and radiographic examinations, overlooking the well-established microbial etiology. This review summarizes the chronological emergence of periodontal etiological models and the co-evolution with technological advances in microbial detection. We additionally review the microbial analytical approaches currently accessible to clinicians, highlighting their value in broadening the periodontal assessment. The epidemiological importance of obtaining culture-based antimicrobial susceptibility profiles of periodontal taxa for antibiotic resistance surveillance is also underscored, together with clinically relevant analytical approaches to guide antibiotherapy choices, when necessary. Furthermore, the importance of 16S-based community and shotgun metagenomic profiling is discussed in outlining dysbiotic microbial signatures. Because dysbiosis precedes periodontal damage, biomarker identification offers early diagnostic possibilities to forestall disease relapses during maintenance. Altogether, this review highlights the underutilized potential of clinical microbiology in periodontology, spotlighting the clinical areas most conductive to its diagnostic implementation for enhancing prevention, treatment predictability, and addressing global antibiotic resistance.
Collapse
Affiliation(s)
- Daniel Manoil
- Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ana Parga
- Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
3
|
Oscarsson J, Bao K, Shiratsuchi A, Grossmann J, Wolski W, Aung KM, Lindholm M, Johansson A, Mowsumi FR, Wai SN, Belibasakis GN, Bostanci N. Bacterial symbionts in oral niche use type VI secretion nanomachinery for fitness increase against pathobionts. iScience 2024; 27:109650. [PMID: 38650989 PMCID: PMC11033201 DOI: 10.1016/j.isci.2024.109650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Microbial ecosystems experience spatial and nutrient restrictions leading to the coevolution of cooperation and competition among cohabiting species. To increase their fitness for survival, bacteria exploit machinery to antagonizing rival species upon close contact. As such, the bacterial type VI secretion system (T6SS) nanomachinery, typically expressed by pathobionts, can transport proteins directly into eukaryotic or prokaryotic cells, consequently killing cohabiting competitors. Here, we demonstrate for the first time that oral symbiont Aggregatibacter aphrophilus possesses a T6SS and can eliminate its close relative oral pathobiont Aggregatibacter actinomycetemcomitans using its T6SS. These findings bring nearer the anti-bacterial prospects of symbionts against cohabiting pathobionts while introducing the presence of an active T6SS in the oral cavity.
Collapse
Affiliation(s)
- Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Kai Bao
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Akiko Shiratsuchi
- Department of Liberal Arts and Sciences, Graduate School of Medicine, Sapporo Medical University, Sapporo, Hokkaido 060-8556, Japan
| | - Jonas Grossmann
- Functional Genomics Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Witold Wolski
- Functional Genomics Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Kyaw Min Aung
- Department of Molecular Biology and the Umeå Centre for Microbial Research (UCMR), and the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Mark Lindholm
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Anders Johansson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology and the Umeå Centre for Microbial Research (UCMR), and the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Georgios N. Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| |
Collapse
|
4
|
Vályi P, Wirth R, Minárovits J, Strang O, Maróti G, Kovács KL. The oral microbiome of a family including Papillon-Lefèvre-syndrome patients and clinically healthy members. BMC Oral Health 2024; 24:158. [PMID: 38297252 PMCID: PMC10832247 DOI: 10.1186/s12903-024-03856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
AIMS The oral microbiota composition of patients diagnosed with Papillon-Lefèvre-syndrome and treated for several years were compared to those existing in the oral cavity of the clinically healthy family members and a cohort of patients having various stages of chronic periodontitis. MATERIALS AND METHODS A family with two sisters affected with severe periodontitis and with the typical skin symptoms of Papillon-Lefèvre-syndrome, and symptomless parents and third sibling were investigated. The Patients received periodontal treatment for several years and their oral microbiome was analysed by amplicon sequencing. Data were evaluated by microbial cluster analysis. RESULTS The microbiome of the patients with Papillon-Lefèvre-syndrome was predominated with Aggregatibacter actinomycetemcomitans and associated oral periodontopathogens. Although the clinically healthy family members showed no oral disorder, their microbiome resembled that of subjects having mild periodontitis. CONCLUSIONS Predominance of A. actinomycetemcomitans in the subgingival microbiome of patients with Papillon-Lefèvre-syndrome suggests that specific treatment strategies directed against this pathobiont may improve the oral health status of the affected individuals. TRIAL REGISTRATION The study was conducted in accordance with the Declaration of Helsinki and the ethical permission has been issued by the Human Investigation Review Board of the University of Szeged, Albert Szent-Györgyi Clinical Centre (Permission No. 63/2017-SZTE). September 19, 2017. https://u-szeged.hu/klinikaikutatas/rkeb-altal-jovahagyott/rkeb-2017 .
Collapse
Affiliation(s)
- Péter Vályi
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Szentkirályi u 47, Budapest, H1085, Hungary.
| | - Roland Wirth
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, H6726, Hungary
- Institute of Plant Biology, Biological Research Center, Temesvári krt 62, Szeged, H6726, Hungary
| | - János Minárovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza L. krt 64, Szeged, H6720, Hungary
| | - Orsolya Strang
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, H6726, Hungary
| | - Gergely Maróti
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, H6726, Hungary
- Institute of Plant Biology, Biological Research Center, Temesvári krt 62, Szeged, H6726, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, H6726, Hungary
- Institute of Biophysics, Biological Research Center, Temesvári krt 62, Szeged, H6726, Hungary
| |
Collapse
|
5
|
Wen L, Luo C, Chen X, Liu T, Li X, Wang M. In vitro Activity of Cefepime/Avibactam Against Carbapenem Resistant Klebsiella pneumoniae and Integrative Metabolomics-Proteomics Approach for Resistance Mechanism: A Single-Center Study. Infect Drug Resist 2023; 16:6061-6077. [PMID: 37719649 PMCID: PMC10503517 DOI: 10.2147/idr.s420898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose We aimed to evaluate the in vitro antibacterial effects of combination of cefepime/avibactam against carbapenem-resistant Klebsiella pneumonia (CRKP) and explore the resistance mechanism of FEP/AVI. Patients and Methods This study explored the in vitro antibacterial activities of ceftazidime/avibactam (CAZ/AVI) and cefepime/avibactam (FEP/AVI) against 40 and 76 CRKP clinical isolates. Proteomics and metabolomics were employed to investigate the resistance mechanisms of CRKP to FEP/AVI. Results FEP/AVI (MIC50/MIC90 0.5/4-64/4 μg/mL, resistance rate 17.1%) showed better antibacterial activity against CRKP than CAZ/AVI (MIC50/MIC90 4/4-128/4 μg/mL, resistance rate 20%) in vitro. Bioinformatics analysis showed that the differentially expressed proteins (DEPs) were enriched in alanine, aspartate and glutamate metabolism, and ribosome. Remarkably, transcriptional and translational activity-related pathways were inhibited in FEP/AVI resistant CRKP. Overlap analysis suggested that H-NS might play an important role in resistance to FEP/AVI in CRKP. The mRNA levels of DEPs-related genes (adhE, gltB, purA, ftsI and hns) showed the same trends as DEPs in FEP/AVI susceptible and resistant strains. FEP/AVI resistant isolates demonstrated stronger biofilm formation capacity than susceptible isolates. Metabolomics results showed that disturbed metabolites were mainly lipids, and adenine was decreased in FEP/AVI resistant CRKP. Conclusion These results indicated that H-NS, GltB and SpoT may directly or indirectly promote biofilm formation of CRKP and led to FEP/AVI resistance, but inhibited ribosomal function. Our study provides a mechanistic insight into the acquisition of resistance to FEP/AVI in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Lingjun Wen
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Can Luo
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xinyi Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Tianyao Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| |
Collapse
|
6
|
Afrasiabi S, Partoazar A, Chiniforush N. In vitro study of nanoliposomes containing curcumin and doxycycline for enhanced antimicrobial photodynamic therapy against Aggregatibacter actinomycetemcomitans. Sci Rep 2023; 13:11552. [PMID: 37464015 DOI: 10.1038/s41598-023-38812-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023] Open
Abstract
The excessive inappropriate use of systemic antibiotics has contributed to the emergence of antibiotic-resistant pathogens, which pose a significant risk to the success of treatment. This study has approached this problem by developing doxycycline-loaded liposome doped with curcumin (NL-Cur+Dox) for combination antibacterial therapy against Aggregatibacter actinomycetemcomitans. The characterization of formulation revealed encapsulation of both drugs in NL-Cur+Dox with an average size of 239 nm and sustained release behavior. Transmission electron microscopy analysis confirmed the vesicular-shaped nanocarriers without any aggregation or crystallization. The cytotoxic and hemolytic activities of NL-Cur+Dox were evaluated. The anti-biofilm and anti-metabolic effects of NL-Cur+Dox -mediated antimicrobial photodynamic therapy (aPDT) were examined. The data indicated that NL-Cur+Dox -mediated aPDT led to a significant reduction of biofilm (82.7%, p = 0.003) and metabolic activity (75%, p < 0.001) of A. actinomycetemcomitans compared to the control. NL-Cur+Dox had no significant cytotoxicity to human gingival fibroblast cells under selected conditions (p = 0.074). In addition, the hemolytic activity of NL-Cur+Dox were negligible (< 5%). These findings demonstrate the potential application of such potent formulations in reducing one of the main bacteria causing periodontitis where the NL-Cur+Dox could be exploited to achieve an improved phototherapeutic efficiency.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Muraoka A, Suzuki M, Hamaguchi T, Watanabe S, Iijima K, Murofushi Y, Shinjo K, Osuka S, Hariyama Y, Ito M, Ohno K, Kiyono T, Kyo S, Iwase A, Kikkawa F, Kajiyama H, Kondo Y. Fusobacterium infection facilitates the development of endometriosis through the phenotypic transition of endometrial fibroblasts. Sci Transl Med 2023; 15:eadd1531. [PMID: 37315109 DOI: 10.1126/scitranslmed.add1531] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
Retrograde menstruation is a widely accepted cause of endometriosis. However, not all women who experience retrograde menstruation develop endometriosis, and the mechanisms underlying these observations are not yet understood. Here, we demonstrated a pathogenic role of Fusobacterium in the formation of ovarian endometriosis. In a cohort of women, 64% of patients with endometriosis but <10% of controls were found to have Fusobacterium infiltration in the endometrium. Immunohistochemical and biochemical analyses revealed that activated transforming growth factor-β (TGF-β) signaling resulting from Fusobacterium infection of endometrial cells led to the transition from quiescent fibroblasts to transgelin (TAGLN)-positive myofibroblasts, which gained the ability to proliferate, adhere, and migrate in vitro. Fusobacterium inoculation in a syngeneic mouse model of endometriosis resulted in a marked increase in TAGLN-positive myofibroblasts and increased number and weight of endometriotic lesions. Furthermore, antibiotic treatment largely prevented establishment of endometriosis and reduced the number and weight of established endometriotic lesions in the mouse model. Our data support a mechanism for the pathogenesis of endometriosis via Fusobacterium infection and suggest that eradication of this bacterium could be an approach to treat endometriosis.
Collapse
Affiliation(s)
- Ayako Muraoka
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Miho Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinya Watanabe
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenta Iijima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshiteru Murofushi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yumi Hariyama
- Department of Obstetrics and Gynecology, Toyota Kosei Hospital, 500-1, Ihohara, Zyosui-cho, Toyota 470-0396, Japan
| | - Mikako Ito
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwanoha 6-5-1, Kashiwa 277-8577, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enya-Cho, Izumo 693-8501, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Claesson R, Johansson A, Belibasakis GN. Age-Related Subgingival Colonization of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Parvimonas micra-A Pragmatic Microbiological Retrospective Report. Microorganisms 2023; 11:1434. [PMID: 37374936 DOI: 10.3390/microorganisms11061434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to compare data about the prevalence and proportions of the bacterial species Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Parvimonas micra in periodontitis pocket samples collected from young, <35 years, and old, >35-year-old patients, YP and OP, respectively. The results from the analyses of a total of 3447 subgingival plaque samples analyzed for clinical diagnosis purposes by cultivation regarding the proportions of these species were collected from a database and elucidated. The prevalence of A. actinomycetemcomitans was found to be more than twice as high (OR = 2.96, 95% CI; 2.50-3.50) in samples from the younger (42.2%) than the older group (20.4%) (p < 0.001). The prevalence of P. micra was significantly lower in samples from the younger age group (OR = 0.43, 95%) (p < 0.001), whereas P. gingivalis was similarly distributed (OR = 0.78, 95%) in the two age groups (p = 0.006). A similar pattern was noticed for A. actinomycetemcomitans and P. gingivalis when high proportions (>50%) of the samples of these bacterial species were elucidated. In contrast, the proportion of samples containing >50% with P. micra was lower compared with the two other bacterial species. Furthermore, it was noted that the proportion of samples from old patients containing A. actinomycetemcomitans in combination with P. micra was almost three times higher than in samples when P. micra was replaced by P. gingivalis. In conclusion, A.actinomycetemcomitans showed an increased presence and proportion in samples from young patients compared with the old patients, while P. gingivalis was similarly distributed in the two age groups. P. micra showed an increased presence and proportion in samples from old patients compared with the young patients.
Collapse
Affiliation(s)
- Rolf Claesson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
| | | | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| |
Collapse
|
9
|
Memariani H, Memariani M. Antibiofilm properties of cathelicidin LL-37: an in-depth review. World J Microbiol Biotechnol 2023; 39:99. [PMID: 36781570 DOI: 10.1007/s11274-023-03545-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Notwithstanding ceaseless endeavors toward developing effective antibiofilm chemotherapeutics, biofilm-associated infections continue to be one of the most perplexing challenges confronting medicine today. Endogenous host defense peptides, such as the human cathelicidin LL-37, are being propounded as promising options for treating such infectious diseases. Over the past decennium, LL-37 has duly received tremendous research attention by virtue of its broad-spectrum antimicrobial activity and immunomodulatory properties. No attempt has hitherto been made, as far as we are aware, to comprehensively review the antibiofilm effects of LL-37. Accordingly, the intent in this paper is to provide a fairly all-embracing review of the literature available on the subject. Accumulating evidence suggests that LL-37 is able to prevent biofilm establishment by different bacterial pathogens such as Acinetobacter baumannii, Aggregatibacter actinomycetemcomitans, Bacteroides fragilis, Burkholderia thailandensis, Cutibacterium acnes, Escherichia coli, Francisella tularensis, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes. Inhibition of bacterial adhesion, downregulation of biofilm-associated genes, suppression of quorum-sensing pathways, degradation of biofilm matrix, and eradication of biofilm-residing cells are the major mechanisms responsible for antibiofilm properties of LL-37. In terms of its efficacy and safety in vivo, there are still many questions to be answered. Undoubtedly, LL-37 can open up new windows of opportunity to prevent and treat obstinate biofilm-mediated infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Belibasakis GN, Belstrøm D, Eick S, Gursoy UK, Johansson A, Könönen E. Periodontal microbiology and microbial etiology of periodontal diseases: Historical concepts and contemporary perspectives. Periodontol 2000 2023. [PMID: 36661184 DOI: 10.1111/prd.12473] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023]
Abstract
This narrative review summarizes the collective knowledge on periodontal microbiology, through a historical timeline that highlights the European contribution in the global field. The etiological concepts on periodontal disease culminate to the ecological plaque hypothesis and its dysbiosis-centered interpretation. Reference is made to anerobic microbiology and to the discovery of select periodontal pathogens and their virulence factors, as well as to biofilms. The evolution of contemporary molecular methods and high-throughput platforms is highlighted in appreciating the breadth and depth of the periodontal microbiome. Finally clinical microbiology is brought into perspective with the contribution of different microbial species in periodontal diagnosis, the combination of microbial and host biomarkers for this purpose, and the use of antimicrobials in the treatment of the disease.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Ulvi K Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
11
|
OUIDIR T, GABRIEL B, CHABANE YNAIT. Overview of multi-species biofilms in different ecosystems: wastewater treatment, soil and oral cavity. J Biotechnol 2022; 350:67-74. [DOI: 10.1016/j.jbiotec.2022.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023]
|
12
|
Pereira AC, Tenreiro A, Cunha MV. When FLOW-FISH met FACS: Combining multiparametric, dynamic approaches for microbial single-cell research in the total environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150682. [PMID: 34600998 DOI: 10.1016/j.scitotenv.2021.150682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
In environmental microbiology, the ability to assess, in a high-throughput way, single-cells within microbial communities is key to understand their heterogeneity. Fluorescence in situ hybridization (FISH) uses fluorescently labeled oligonucleotide probes to detect, identify, and quantify single cells of specific taxonomic groups. The combination of Flow Cytometry (FLOW) with FISH (FLOW-FISH) enables high-throughput quantification of complex whole cell populations, which when associated with fluorescence-activated cell sorting (FACS) enables sorting of target microorganisms. These sorted cells may be investigated in many ways, for instance opening new avenues for cytomics at a single-cell scale. In this review, an overview of FISH and FLOW methodologies is provided, addressing conventional methods, signal amplification approaches, common fluorophores for cell physiology parameters evaluation, and model variation techniques as well. The coupling of FLOW-FISH-FACS is explored in the context of different downstream applications of sorted cells. Current and emerging applications in environmental microbiology to outline the interactions and processes of complex microbial communities within soil, water, animal microbiota, polymicrobial biofilms, and food samples, are described.
Collapse
Affiliation(s)
- André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Tenreiro
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
13
|
Virulence traits and plasmid-mediated quinolone resistance among Aggregatibacter actinomycetemcomitans from Iraq: Low rate of highly virulent JP2 genotype. Microb Pathog 2022; 164:105438. [DOI: 10.1016/j.micpath.2022.105438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
|
14
|
Oleoresins and naturally occurring compounds of Copaifera genus as antibacterial and antivirulence agents against periodontal pathogens. Sci Rep 2021; 11:4953. [PMID: 33654123 PMCID: PMC7925542 DOI: 10.1038/s41598-021-84480-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Invasion of periodontal tissues by Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can be associated with aggressive forms of periodontitis. Oleoresins from different copaifera species and their compounds display various pharmacological properties. The present study evaluates the antibacterial and antivirulence activity of oleoresins obtained from different copaifera species and of ten isolated compounds against two causative agents of periodontitis. The following assays were performed: determination of the minimum inhibitory concentration (MIC), determination of the minimum bactericidal concentration (MBC), and determination of the antibiofilm activity by inhibition of biofilm formation and biofilm eradication tests. The antivirulence activity was assessed by hemagglutination, P. gingivalis Arg-X and Lis-X cysteine protease inhibition assay, and A. actinomycetemcomitans leukotoxin inhibition assay. The MIC and MBC of the oleoresins and isolated compounds 1, 2, and 3 ranged from 1.59 to 50 μg/mL against P. gingivalis (ATCC 33277) and clinical isolates and from 6.25 to 400 μg/mL against A. actinomycetemcomitans (ATCC 43717) and clinical isolates. About the antibiofilm activity, the oleoresins and isolated compounds 1, 2, and 3 inhibited biofilm formation by at least 50% and eradicated pre-formed P. gingivalis and A. actinomycetemcomitans biofilms in the monospecies and multispecies modes. A promising activity concerning cysteine protease and leucotoxin inhibition was also evident. In addition, molecular docking analysis was performed. The investigated oleoresins and their compounds may play an important role in the search for novel sources of agents that can act against periodontal pathogens.
Collapse
|
15
|
Manoil D, Courvoisier DS, Gilbert B, Möller B, Walker UA, Muehlenen IV, Rubbert-Roth A, Finckh A, Bostanci N. Associations between serum antibodies to periodontal pathogens and preclinical phases of rheumatoid arthritis. Rheumatology (Oxford) 2021; 60:4755-4764. [PMID: 33512428 DOI: 10.1093/rheumatology/keab097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To examine whether serum antibodies against selected periodontal pathogens are associated with early symptoms of RA development in healthy individuals at risk of developing the disease. METHODS Within an ongoing study cohort of first-degree relatives of patients with RA (RA-FDRs), we selected four groups corresponding to specific preclinical phases of RA development (n = 201). (i) RA-FDR controls without signs and symptoms of arthritis nor RA-related autoimmunity (n = 51); (ii) RA-FDRs with RA-related autoimmunity (n = 51); (iii) RA-FDRs with inflammatory arthralgias without clinical arthritis (n = 51); and (iv) RA-FDRs who have presented at least one swollen joint ('unclassified arthritis') (n = 48). Groups were matched for smoking, age, sex and shared epitope status. The primary outcome was IgG serum levels against five selected periodontal pathogens and one commensal oral species assessed using validated-in-house ELISA assays. Associations between IgG measurements and preclinical phases of RA development were examined using Kruskal-Wallis or Mann-Whitney tests (α = 0.05). RESULTS None of the IgGs directed against individual periodontal pathogens significantly differed between the four groups of RA-FDRs. Further analyses of cumulated IgG levels into bacterial clusters representative of periodontal infections revealed significantly higher IgG titres against periodontopathogens in anti-citrullinated protein antibodies (ACPA)-positive RA-FDRs (P = 0.015). Current smoking displayed a marked trend towards reduced IgG titres against periodontopathogens. CONCLUSION Our results do not suggest an association between serum IgG titres against individual periodontal pathogens and specific preclinical phases of RA development. However, associations between cumulative IgG titres against periodontopathogens and the presence of ACPAs suggest a synergistic contribution of periodontopathogens to ACPA development.
Collapse
Affiliation(s)
- Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Delphine S Courvoisier
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva
| | - Benoit Gilbert
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva
| | - Burkhard Möller
- Department of Rheumatology, Immunology and Allergology, University Hospital Inselspital Bern, Bern
| | | | | | - Andrea Rubbert-Roth
- Division of Rheumatology and Immunology, Kantonsspital St. Gallen, St Gallen
| | - Axel Finckh
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Bostanci N, Grant M, Bao K, Silbereisen A, Hetrodt F, Manoil D, Belibasakis GN. Metaproteome and metabolome of oral microbial communities. Periodontol 2000 2020; 85:46-81. [PMID: 33226703 DOI: 10.1111/prd.12351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of high-throughput technologies for the comprehensive measurement of biomolecules, also referred to as "omics" technologies, has helped us gather "big data" and characterize microbial communities. In this article, we focus on metaproteomic and metabolomic approaches that support hypothesis-driven investigations on various oral biologic samples. Proteomics reveals the working units of the oral milieu and metabolomics unveils the reactions taking place; and so these complementary techniques can unravel the functionality and underlying regulatory processes within various oral microbial communities. Current knowledge of the proteomic interplay and metabolic interactions of microorganisms within oral biofilm and salivary microbiome communities is presented and discussed, from both clinical and basic research perspectives. Communities indicative of, or from, health, caries, periodontal diseases, and endodontic lesions are represented. Challenges, future prospects, and examples of best practice are given.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Grant
- Biological Sciences, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franziska Hetrodt
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Yu Z, Zhang J, Ding M, Wu S, Shuangjia Li, Zhang M, Yin J, Meng Q. SspA positively controls exopolysaccharides production and biofilm formation by up-regulating the algU expression in Pseudoalteromonas sp. R3. Biochem Biophys Res Commun 2020; 533:988-994. [PMID: 33010891 DOI: 10.1016/j.bbrc.2020.09.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Biofilm formation enhances the survival and persistence of microorganisms in response to environmental stresses. It has been revealed that stringent starvation protein A (SspA) can function as an important regulator dealing with environmental stresses for bacterial survival. However, the connection between SspA and biofilm formation is essentially unclear yet. In this study, we presented evidence showing SspA positively controls biofilm formation by up-regulating exopolysaccharides (EPS) production in marine bacterium Pseudoalteromonas sp. R3. Both qPCR and lacZ reporter system congruously revealed that SspA positively controls the expression of EPS biosynthesis gene cluster. Unlike generally accepted thought that SspA regulates bacterial physiology by inhibiting the expression of histone-like nucleotide structuring protein (H-NS) gene, the function of SspA on EPS production and biofilm formation in Pseudoalteromonas sp. R3 is H-NS-independent. Instead, SspA positively regulates the expression of sigma factor AlgU-encoding gene, thus affecting EPS biosynthesis and biofilm formation. In view of the important role of SspA in biofilm formation, we believe that the improvement of tolerance to marine environmental stresses could be related to tuning of SspA-involved biofilm formation.
Collapse
Affiliation(s)
- Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China.
| | - Jiadi Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Mengdan Ding
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Shijun Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Shuangjia Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Mengting Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China.
| |
Collapse
|
18
|
Bao K, Li X, Kajikawa T, Toshiharu A, Selevsek N, Grossmann J, Hajishengallis G, Bostanci N. Pressure Cycling Technology Assisted Mass Spectrometric Quantification of Gingival Tissue Reveals Proteome Dynamics during the Initiation and Progression of Inflammatory Periodontal Disease. Proteomics 2020; 20:e1900253. [PMID: 31881116 DOI: 10.1002/pmic.201900253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Understanding the progression of periodontal tissue destruction is at the forefront of periodontal research. The authors aimed to capture the dynamics of gingival tissue proteome during the initiation and progression of experimental (ligature-induced) periodontitis in mice. Pressure cycling technology (PCT), a recently developed platform that uses ultra-high pressure to disrupt tissues, is utilized to achieve efficient and reproducible protein extraction from ultra-small amounts of gingival tissues in combination with liquid chromatography-tandem mass spectrometry (MS). The MS data are processed using Progenesis QI and the regulated proteins are subjected to METACORE, STRING, and WebGestalt for functional enrichment analysis. A total of 1614 proteins with ≥2 peptides are quantified with an estimated protein false discovery rate of 0.06%. Unsupervised clustering analysis shows that the gingival tissue protein abundance is mainly dependent on the periodontitis progression stage. Gene ontology enrichment analysis reveals an overrepresentation in innate immune regulation (e.g., neutrophil-mediated immunity and antimicrobial peptides), signal transduction (e.g., integrin signaling), and homeostasis processes (e.g., platelet activation and aggregation). In conclusion, a PCT-assisted label-free quantitative proteomics workflow that allowed cataloging the deepest gingival tissue proteome on a rapid timescale and provided novel mechanistic insights into host perturbation during periodontitis progression is applied.
Collapse
Affiliation(s)
- Kai Bao
- Section of Peridontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Kartolinska Insitutet, Alfred Nobels alle 8, 14104, Huddinge, Sweden
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Abe Toshiharu
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Nathalie Selevsek
- Swiss Integrative Center for Human Health, Passage du Cardinal 13 B, CH-1700, Fribourg, Switzerland
| | - Jonas Grossmann
- Function Genomic Centre, ETH Zurich and University of Zurich, 8092, Zurich, Switzerland
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Nagihan Bostanci
- Section of Peridontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Kartolinska Insitutet, Alfred Nobels alle 8, 14104, Huddinge, Sweden
| |
Collapse
|
19
|
Whole Genome Sequencing of Aggregatibacter actinomycetemcomitans Cultured from Blood Stream Infections Reveals Three Major Phylogenetic Groups Including a Novel Lineage Expressing Serotype a Membrane O Polysaccharide. Pathogens 2019; 8:pathogens8040256. [PMID: 31766652 PMCID: PMC6963875 DOI: 10.3390/pathogens8040256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Twenty-nine strains of Aggregatibacter actinomycetemcomitans cultured from blood stream infections in Denmark were characterised. Serotyping was unremarkable, with almost equal proportions of the three major types plus a single serotype e strain. Whole genome sequencing positioned the serotype e strain outside the species boundary; moreover, one of the serotype a strains was unrelated to other strains of the major serotypes and to deposited sequences in the public databases. We identified five additional strains of this type in our collections. The particularity of the group was corroborated by phylogenetic analysis of concatenated core genes present in all strains of the species, and by uneven distribution of accessory genes only present in a subset of strains. Currently, the most accurate depiction of A. actinomycetemcomitans is a division into three lineages that differ in genomic content and competence for transformation. The clinical relevance of the different lineages is not known, and even strains excluded from the species sensu stricto can cause serious human infections. Serotyping is insufficient for characterisation, and serotypes a and e are not confined to specific lineages.
Collapse
|
20
|
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, Ihalin R, Johansson A. Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019; 8:E222. [PMID: 31698835 PMCID: PMC6963787 DOI: 10.3390/pathogens8040222] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen colonizing the oral cavity of a large proportion of the human population. It is equipped with several potent virulence factors that can cause cell death and induce or evade inflammation. Because of the large genetic diversity within the species, both harmless and highly virulent genotypes of the bacterium have emerged. The oral condition and age, as well as the geographic origin of the individual, influence the risk to be colonized by a virulent genotype of the bacterium. In the present review, the virulence and pathogenicity properties of A. actinomycetemcomitans will be addressed.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Terhi Maula
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Mark Lindholm
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Jan Oscarsson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Anders Johansson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
21
|
Miller DP, Fitzsimonds ZR, Lamont RJ. Metabolic Signaling and Spatial Interactions in the Oral Polymicrobial Community. J Dent Res 2019; 98:1308-1314. [PMID: 31356756 DOI: 10.1177/0022034519866440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oral supra- and subgingival biofilms are complex communities in which hundreds of bacteria, viruses, and fungi reside and interact. In these social environments, microbes compete and cooperate for resources, such as living space and nutrients. The metabolic activities of bacteria can transform their microenvironment and dynamically influence the fitness and growth of cohabitating organisms. Biofilm communities are temporally and spatially organized largely due to cell-to-cell communication, which promotes synergistic interactions. Metabolic interactions maintain biofilm homeostasis through mutualistic cross-feeding, metabolic syntrophy, and cross-respiration. These interactions include reciprocal metabolite exchanges that promote the growth of physiologically compatible bacteria, processive catabolism of complex substrates, and unidirectional interactions that are globally important for the polymicrobial community. Additionally, oral bacterial interactions can lead to detoxification of oxidative compounds, which will provide protection to the community at large. It has also been established that specific organisms provide terminal electron acceptors to partner species that result in a shift from fermentation to respiration, thus increasing ATP yields and improving fitness. Indeed, many interspecies relationships are multidimensional, and the net outcome can be spatially and temporally dependent. Cross-kingdom interactions also occur as oral yeast are antagonistic to some oral bacteria, while numerous mutualistic interactions contribute to yeast-bacterial colonization, fitness in the oral community, and the pathogenesis of caries. Consideration of this social environment reveals behaviors and phenotypes that are not apparent through the study of microbes in isolation. Here, we provide a comprehensive overview of the metabolic interactions that shape the oral microbial community.
Collapse
Affiliation(s)
- D P Miller
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Z R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
22
|
Miller DP, Lamont RJ. Signaling Systems in Oral Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:27-43. [PMID: 31732932 DOI: 10.1007/978-3-030-28524-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The supra- and subgingival plaque biofilm communities of plaque are composed of hundreds of different microbes. These communities are spatially and temporally structured, largely due to cell-cell communications that coordinate synergistic interactions, and intracellular signaling systems to sense changes in the surrounding environment. Homeostasis is maintained through metabolic communication, mutualistic cross-feeding, and cross-respiration. These nutritional symbioses can reciprocally influence the local microenvironments by altering the pH and by detoxifying oxidative compounds. Signal transduction mechanisms include two-component systems, tyrosine phosphorelays, quorum sensing systems, and cyclic nucleotide secondary messengers. Signaling converges on transcriptional programs and can result in synergistic or antagonistic interbacterial interactions that sculpt community development. The sum of all these interactions can be a well-organized polymicrobial community that remains in homeostasis with the host, or a dysbiotic community that provokes pathogenic responses in the host.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| |
Collapse
|