1
|
Das S, Cheela VRS, Dubey B, Ghangrekar M. Design and operation of pilot-scale microbial electrosynthesis for the production of acetic acid from biogas with economic and environmental assessment. Heliyon 2024; 10:e39950. [PMID: 39553658 PMCID: PMC11566675 DOI: 10.1016/j.heliyon.2024.e39950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
The embryonic technology of microbial electrosynthesis (MES) possesses the potential to alleviate global CO2 concentration with concomitant recovery of valuables. However, due to the significant bottlenecks of inferior yield of valuables and higher capital cost, its potential has not been fully realized at a larger scale till date. With the aim of bridging this lacuna, a first of its kind pilot-scale MES (PSMES) was designed and operated to yield acetic acid from biogas. The PSMES was able to produce 70.55 g m-2.day of acetic acid in its extraction chamber with the coulombic efficiency of 77.8 % for an imposed cathode potential of -1.0 V vs. standard hydrogen electrode. Moreover, life cycle assessment (LCA) and economic analysis of the PSMES was also conducted to elucidate the economic and environmental feasibility of the same. From the LCA and economic analysis of the PSMES, it was inferred that acrylic sheet and carbon felt used during the fabrication of PSMES were the major culprit in terms of both environmental and economic sustainability and thus should be replaced with greener but cost-effective materials. Therefore, these results would guide the budding scholars in designing more economical and environment friendly scaled-up MES, thus paving towards the commercialization of this ingenious technology.
Collapse
Affiliation(s)
- Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Venkata Ravi Sankar Cheela
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, MVGR College of Engineering (Autonomous), Vizianagaram, Andhra Pradesh, 535005, India
| | - B.K. Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - M.M. Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
2
|
Jin J, Wu Y, Cao P, Zheng X, Zhang Q, Chen Y. Potential and challenge in accelerating high-value conversion of CO 2 in microbial electrosynthesis system via data-driven approach. BIORESOURCE TECHNOLOGY 2024; 412:131380. [PMID: 39214179 DOI: 10.1016/j.biortech.2024.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microbial electrosynthesis for CO2 utilization (MESCU) producing valuable chemicals with high energy density has garnered attention due to its long-term stability and high coulombic efficiency. The data-driven approaches offer a promising avenue by leveraging existing data to uncover the underlying patterns. This comprehensive review firstly uncovered the potentials of utilizing data-driven approaches to enhance high-value conversion of CO2 via MESCU. Firstly, critical challenges of MESCU advancing have been identified, including reactor configuration, cathode design, and microbial analysis. Subsequently, the potential of data-driven approaches to tackle the corresponding challenges, encompassing the identification of pivotal parameters governing reactor setup and cathode design, alongside the decipheration of omics data derived from microbial communities, have been discussed. Correspondingly, the future direction of data-driven approaches in assisting the application of MESCU has been addressed. This review offers guidance and theoretical support for future data-driven applications to accelerate MESCU research and potential industrialization.
Collapse
Affiliation(s)
- Jiasheng Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Peiyu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
3
|
Romans-Casas M, Feliu-Paradeda L, Tedesco M, Hamelers HV, Bañeras L, Balaguer MD, Puig S, Dessì P. Selective butyric acid production from CO 2 and its upgrade to butanol in microbial electrosynthesis cells. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100303. [PMID: 37635954 PMCID: PMC10457423 DOI: 10.1016/j.ese.2023.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
Microbial electrosynthesis (MES) is a promising carbon utilization technology, but the low-value products (i.e., acetate or methane) and the high electric power demand hinder its industrial adoption. In this study, electrically efficient MES cells with a low ohmic resistance of 15.7 mΩ m2 were operated galvanostatically in fed-batch mode, alternating periods of high CO2 and H2 availability. This promoted acetic acid and ethanol production, ultimately triggering selective (78% on a carbon basis) butyric acid production via chain elongation. An average production rate of 14.5 g m-2 d-1 was obtained at an applied current of 1.0 or 1.5 mA cm-2, being Megasphaera sp. the key chain elongating player. Inoculating a second cell with the catholyte containing the enriched community resulted in butyric acid production at the same rate as the previous cell, but the lag phase was reduced by 82%. Furthermore, interrupting the CO2 feeding and setting a constant pH2 of 1.7-1.8 atm in the cathode compartment triggered solventogenic butanol production at a pH below 4.8. The efficient cell design resulted in average cell voltages of 2.6-2.8 V and a remarkably low electric energy requirement of 34.6 kWhel kg-1 of butyric acid produced, despite coulombic efficiencies being restricted to 45% due to the cross-over of O2 and H2 through the membrane. In conclusion, this study revealed the optimal operating conditions to achieve energy-efficient butyric acid production from CO2 and suggested a strategy to further upgrade it to valuable butanol.
Collapse
Affiliation(s)
- Meritxell Romans-Casas
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Laura Feliu-Paradeda
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - Michele Tedesco
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Hubertus V.M. Hamelers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Lluis Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - M. Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Paolo Dessì
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| |
Collapse
|
4
|
Kimura ZI, Kuriyama H, Iwasaki Y. Exploring Acetogenesis in Firmicutes: From Phylogenetic Analysis to Solid Medium Cultivation with Solid-Phase Electrochemical Isolation Equipments. Microorganisms 2023; 11:2976. [PMID: 38138120 PMCID: PMC10746088 DOI: 10.3390/microorganisms11122976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
This study introduces a groundbreaking approach for the exploration and utilization of electrotrophic acetogens, essential for advancing microbial electrosynthesis systems (MES). Our initial focus was the development of Solid-Phase Electrochemical Isolation Equipment (SPECIEs), a novel cultivation method for isolating electrotrophic acetogens directly from environmental samples on a solid medium. SPECIEs uses electrotrophy as a selection pressure, successfully overcoming the traditional cultivation method limitations and enabling the cultivation of diverse microbial communities with enhanced specificity towards acetogens. Following the establishment of SPECIEs, we conducted a genome-based phylogenetic analysis using the Genome Taxonomy Database (GTDB) to identify potential electrotrophic acetogens within the Firmicutes phylum and its related lineages. Subsequently, we validated the electrotrophic capabilities of selected strains under electrode-oxidizing conditions in a liquid medium. This sequential approach, integrating innovative cultivation techniques with detailed phylogenetic analysis, paves the way for further advances in microbial cultivation and the identification of new biocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Zen-ichiro Kimura
- Department of Civil and Environmental Engineering, National Institute of Technology, Kure College, 2-2-11 Aga-minami, Kure, Hiroshima 737-8506, Japan; (H.K.); (Y.I.)
| | | | | |
Collapse
|
5
|
Dessì P, Buenaño-Vargas C, Martínez-Sosa S, Mills S, Trego A, Ijaz UZ, Pant D, Puig S, O'Flaherty V, Farràs P. Microbial electrosynthesis of acetate from CO 2 in three-chamber cells with gas diffusion biocathode under moderate saline conditions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100261. [PMID: 37089695 PMCID: PMC10120373 DOI: 10.1016/j.ese.2023.100261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The industrial adoption of microbial electrosynthesis (MES) is hindered by high overpotentials deriving from low electrolyte conductivity and inefficient cell designs. In this study, a mixed microbial consortium originating from an anaerobic digester operated under saline conditions (∼13 g L-1 NaCl) was adapted for acetate production from bicarbonate in galvanostatic (0.25 mA cm-2) H-type cells at 5, 10, 15, or 20 g L-1 NaCl concentration. The acetogenic communities were successfully enriched only at 5 and 10 g L-1 NaCl, revealing an inhibitory threshold of about 6 g L-1 Na+. The enriched planktonic communities were then used as inoculum for 3D printed, three-chamber cells equipped with a gas diffusion biocathode. The cells were fed with CO2 gas and operated galvanostatically (0.25 or 1.00 mA cm-2). The highest production rate of 55.4 g m-2 d-1 (0.89 g L-1 d-1), with 82.4% Coulombic efficiency, was obtained at 5 g L-1 NaCl concentration and 1 mA cm-2 applied current, achieving an average acetate production of 44.7 kg MWh-1. Scanning electron microscopy and 16S rRNA sequencing analysis confirmed the formation of a cathodic biofilm dominated by Acetobacterium sp. Finally, three 3D printed cells were hydraulically connected in series to simulate an MES stack, achieving three-fold production rates than with the single cell at 0.25 mA cm-2. This confirms that three-chamber MES cells are an efficient and scalable technology for CO2 bio-electro recycling to acetate and that moderate saline conditions (5 g L-1 NaCl) can help reduce their power demand while preserving the activity of acetogens.
Collapse
Affiliation(s)
- Paolo Dessì
- School of Biological and Chemical Sciences and Energy Research Centre, Ryan Institute, University of Galway, University Road, H91 CF50, Galway, Ireland
- LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
- Corresponding author. LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain.
| | - Claribel Buenaño-Vargas
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Santiago Martínez-Sosa
- School of Biological and Chemical Sciences and Energy Research Centre, Ryan Institute, University of Galway, University Road, H91 CF50, Galway, Ireland
| | - Simon Mills
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Anna Trego
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Umer Z. Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Vincent O'Flaherty
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Pau Farràs
- School of Biological and Chemical Sciences and Energy Research Centre, Ryan Institute, University of Galway, University Road, H91 CF50, Galway, Ireland
| |
Collapse
|
6
|
Singh S, Keating C, Ijaz UZ, Hassard F. Molecular insights informing factors affecting low temperature anaerobic applications: Diversity, collated core microbiomes and complexity stability relationships in LCFA-fed systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162420. [PMID: 36842571 DOI: 10.1016/j.scitotenv.2023.162420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Fats, oil and grease, and their hydrolyzed counterparts-long chain fatty acids (LCFA) make up a large fraction of numerous wastewaters and are challenging to degrade anaerobically, more so, in low temperature anaerobic digestion (LtAD) systems. Herein, we perform a comparative analysis of publicly available Illumina 16S rRNA datasets generated from LCFA-degrading anaerobic microbiomes at low temperatures (10 and 20 °C) to comprehend the factors affecting microbial community dynamics. The various factors considered were the inoculum, substrate and operational characteristics, the reactor operation mode and reactor configuration, and the type of nucleic acid sequenced. We found that LCFA-degrading anaerobic microbiomes were differentiated primarily by inoculum characteristics (inoculum source and morphology) in comparison to the other factors tested. Inoculum characteristics prominently shaped the species richness, species evenness and beta-diversity patterns in the microbiomes even after long term operation of continuous reactors up to 150 days, implying the choice of inoculum needs careful consideration. The generalised additive models represented through beta diversity contour plots revealed that psychrophilic bacteria RBG-13-54-9 from family Anaerolineae, and taxa WCHB1-41 and Williamwhitmania were highly abundant in LCFA-fed microbial niches, suggesting their role in anaerobic treatment of LCFAs at low temperatures of 10-20 °C. Overall, we showed that the following bacterial genera: uncultured Propionibacteriaceae, Longilinea, Christensenellaceae R7 group, Lactivibrio, candidatus Caldatribacterium, Aminicenantales, Syntrophus, Syntrophomonas, Smithella, RBG-13-54-9, WCHB1-41, Trichococcus, Proteiniclasticum, SBR1031, Lutibacter and Lentimicrobium have prominent roles in LtAD of LCFA-rich wastewaters at 10-20 °C. This study provides molecular insights of anaerobic LCFA degradation under low temperatures from collated datasets and will aid in improving LtAD systems for treating LCFA-rich wastewaters.
Collapse
Affiliation(s)
- Suniti Singh
- Cranfield Water Science Institute, Cranfield University, College Way, Bedfordshire MK43 0AL, UK.
| | - Ciara Keating
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Umer Zeeshan Ijaz
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK; College of Science and Engineering, NUI Galway, Ireland.
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, College Way, Bedfordshire MK43 0AL, UK; Institute for Nanotechnology and Water Sustainability, University of South Africa, UNISA Science Campus, 1710 Roodepoort, Johannesburg, South Africa.
| |
Collapse
|
7
|
Bakonyi P, Koók L, Rózsenberszki T, Kalauz-Simon V, Bélafi-Bakó K, Nemestóthy N. CO2-refinery through microbial electrosynthesis (MES): A concise review on design, operation, biocatalysts and perspectives. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|