1
|
Kontogiannis A, Karaviti E, Karaviti D, Lanitis S, Gomatou G, Syrigos NK, Kotteas E. Mutations Matter: Unravelling the Genetic Blueprint of Invasive Lobular Carcinoma for Progression Insights and Treatment Strategies. Cancers (Basel) 2024; 16:3826. [PMID: 39594781 PMCID: PMC11593237 DOI: 10.3390/cancers16223826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Invasive Lobular Carcinoma (ILC) presents a distinct subtype of breast cancer, representing 10-15% of cases, with unique clinical and molecular features. Characterized by a non-cohesive, single-file invasion pattern, ILC is typically estrogen receptor (ER)- and progesterone receptor (PR)-positive but human epidermal growth factor receptor 2 (HER2)-negative. Despite favorable prognostic features, its highly metastatic nature and predilection for atypical sites contribute to lower long-term survival compared to invasive breast carcinoma of no special type (NST). ILC's genetic landscape includes mutations in various genes (CDH1, BRCA2, ATM, etc.) and signaling pathways that impact treatment responses, especially in endocrine treatment. Furthermore, the diverse ILC subtypes complicate its management. Current challenges in chemotherapy, along with the targeted therapies, are also discussed. The present article aims to comprehensively review the recent literature, focusing on the pathological and molecular aspects of ILC, including associated genetic mutations influencing disease progression and drug resistance.
Collapse
Affiliation(s)
- Athanasios Kontogiannis
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Eleftheria Karaviti
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Dimitra Karaviti
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Sophocles Lanitis
- 2nd Department of Surgery, Korgiallenio Benakeio Athens General Hospital, 115 26 Athens, Greece;
| | - Georgia Gomatou
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Nikolaos K. Syrigos
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| |
Collapse
|
2
|
Yates ME, Waltermire H, Mori K, Li Z, Li Y, Guzolik H, Wang X, Liu T, Atkinson JM, Hooda J, Lee AV, Oesterreich S. ESR1 Fusions Invoke Breast Cancer Subtype-Dependent Enrichment of Ligand-Independent Oncogenic Signatures and Phenotypes. Endocrinology 2024; 165:bqae111. [PMID: 39207954 PMCID: PMC11384147 DOI: 10.1210/endocr/bqae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer is a leading cause of female mortality and despite advancements in personalized therapeutics, metastatic disease largely remains incurable due to drug resistance. The estrogen receptor (ER, ESR1) is expressed in two-thirds of all breast cancer, and under endocrine stress, somatic ESR1 mutations arise in approximately 30% of cases that result in endocrine resistance. We and others reported ESR1 fusions as a mechanism of ER-mediated endocrine resistance. ER fusions, which retain the activation function 1- and DNA-binding domains, harbor ESR1 exons 1 to 6 fused to an in-frame gene partner resulting in loss of the ER ligand-binding domain (LBD). We demonstrate that in a no-special type (invasive ductal carcinoma [IDC]-NST) and an invasive lobular carcinoma (ILC) cell line, ER fusions exhibit robust hyperactivation of canonical ER signaling pathways independent of estradiol or antiendocrine therapies. We employ cell line models stably overexpressing ER fusions with concurrent endogenous ER knockdown to minimize endogenous ER influence. Cell lines exhibited shared transcriptomic enrichment in pathways known to be drivers of metastatic disease, notably MYC signaling. Cells expressing the 3' fusion partners SOX9 and YAP1 consistently demonstrated enhanced growth and cell survival. ILC cells expressing the DAB2 fusion led to enhanced growth, survival, and migration, phenotypes not appreciated in the IDC-NST DAB2 model. Herein, we report that cell line activity is subtype-, fusion-, and assay-specific, suggesting that LBD loss, the fusion partner, and the cellular landscape all influence fusion activities. Therefore, it will be critical to assess fusion frequency in the context of the clinicopathology.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Female
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Cell Line, Tumor
- Phenotype
- YAP-Signaling Proteins/genetics
- YAP-Signaling Proteins/metabolism
- SOX9 Transcription Factor/genetics
- SOX9 Transcription Factor/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Signal Transduction/genetics
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Gene Expression Regulation, Neoplastic
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Ligands
- Cell Proliferation/genetics
Collapse
Affiliation(s)
- Megan E Yates
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Integrative Systems Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hunter Waltermire
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Biomedical Masters Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kanako Mori
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zheqi Li
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yiting Li
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Hannah Guzolik
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Xiaosong Wang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tiantong Liu
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Jennifer M Atkinson
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jagmohan Hooda
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Adrian V Lee
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Integrative Systems Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Human Genetics Graduate Program, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Integrative Systems Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Human Genetics Graduate Program, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Valentín López JC, Lange CA, Dehm SM. Androgen receptor and estrogen receptor variants in prostate and breast cancers. J Steroid Biochem Mol Biol 2024; 241:106522. [PMID: 38641298 PMCID: PMC11139604 DOI: 10.1016/j.jsbmb.2024.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/23/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The androgen receptor (AR) and estrogen receptor alpha (ERα) are steroid receptor transcription factors with critical roles in the development and progression of prostate and breast cancers. Advances in the understanding of mechanisms underlying the ligand-dependent activation of these transcription factors have contributed to the development of small molecule inhibitors that block AR and ERα actions. These inhibitors include competitive antagonists and degraders that directly bind the ligand binding domains of these receptors, luteinizing hormone releasing hormone (LHRH) analogs that suppress gonadal synthesis of testosterone or estrogen, and drugs that block specific enzymes required for biosynthesis of testosterone or estrogen. However, resistance to these therapies is frequent, and is often driven by selection for tumor cells with alterations in the AR or ESR1 genes and/or alternatively spliced AR or ESR1 mRNAs that encode variant forms AR or ERα. While most investigations involving AR have been within the context of prostate cancer, and the majority of investigations involving ERα have been within the context of breast cancer, important roles for AR have been elucidated in breast cancer, and important roles for ERα have been elucidated in prostate cancer. Here, we will discuss the roles of AR and ERα in breast and prostate cancers, outline the effects of gene- and mRNA-level alterations in AR and ESR1 on progression of these diseases, and identify strategies that are being developed to target these alterations therapeutically.
Collapse
Affiliation(s)
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Medicine-Hematology, Oncology & Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA; Department of Urology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Thomas A, Shatsky R, Kalinsky K. Moving precision forward: extending next generation sequencing to operable disease in less common breast cancer subtypes. Ann Oncol 2024; 35:7-9. [PMID: 37871698 DOI: 10.1016/j.annonc.2023.10.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023] Open
Affiliation(s)
- A Thomas
- Section on Hematology and Oncology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem.
| | - R Shatsky
- Department of Medicine, University of California, San Diego. https://twitter.com/dr_rshatsky
| | - K Kalinsky
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA. https://twitter.com/kalinskykevin
| |
Collapse
|
5
|
Batra H, Mouabbi JA, Ding Q, Sahin AA, Raso MG. Lobular Carcinoma of the Breast: A Comprehensive Review with Translational Insights. Cancers (Basel) 2023; 15:5491. [PMID: 38001750 PMCID: PMC10670219 DOI: 10.3390/cancers15225491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The second most common breast carcinoma, invasive lobular carcinoma, accounts for approximately 15% of tumors of breast origin. Its incidence has increased in recent times due in part to hormone replacement therapy and improvement in diagnostic modalities. Although believed to arise from the same cell type as their ductal counterpart, invasive lobular carcinomas (ILCs) are a distinct entity with different regulating genetic pathways, characteristic histologies, and different biology. The features most unique to lobular carcinomas include loss of E-Cadherin leading to discohesion and formation of a characteristic single file pattern on histology. Because most of these tumors exhibit estrogen receptor positivity and Her2 neu negativity, endocrine therapy has predominated to treat these tumors. However novel treatments like CDK4/6 inhibitors have shown importance and antibody drug conjugates may be instrumental considering newer categories of Her 2 Low breast tumors. In this narrative review, we explore multiple pathological aspects and translational features of this unique entity. In addition, due to advancement in technologies like spatial transcriptomics and other hi-plex technologies, we have tried to enlist upon the characteristics of the tumor microenvironment and the latest associated findings to better understand the new prospective therapeutic options in the current era of personalized treatment.
Collapse
Affiliation(s)
- Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jason Aboudi Mouabbi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.D.); (A.A.S.)
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.D.); (A.A.S.)
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
6
|
Yates ME, Li Z, Li Y, Guzolik H, Wang X, Liu T, Hooda J, Atkinson JM, Lee AV, Oesterreich S. ESR1 fusion proteins invoke breast cancer subtype-dependent enrichment of ligand independent pro-oncogenic signatures and phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558175. [PMID: 37790296 PMCID: PMC10542116 DOI: 10.1101/2023.09.18.558175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Breast cancer is a leading cause of female mortality and despite advancements in diagnostics and personalized therapeutics, metastatic disease largely remains incurable due to drug resistance. Fortunately, identification of mechanisms of therapeutic resistance have rapidly transformed our understanding of cancer evasion and is enabling targeted treatment regimens. When the druggable estrogen receptor (ER, ESR1 ), expressed in two-thirds of all breast cancer, is exposed to endocrine therapy, there is risk of somatic mutation development in approximately 30% of cases and subsequent treatment resistance. A more recently discovered mechanism of ER mediated endocrine resistance is the expression of ER fusion proteins. ER fusions, which retain the protein's DNA binding domain, harbor ESR1 exons 1-6 fused to an in-frame gene partner resulting in loss of the 3' ER ligand binding domain (LBD). In this report we demonstrate that in no-special type (NST) and invasive lobular carcinoma (ILC) cell line models, ER fusion proteins exhibit robust hyperactivation of canonical ER signaling pathways independent of the ligand estradiol or anti-endocrine therapies such as Fulvestrant and Tamoxifen. We employ cell line models stably overexpressing ER fusion proteins with concurrent endogenous ER knockdown to minimize the influence of endogenous wildtype ER. Cell lines exhibited shared transcriptomic enrichment in pathways known to be drivers of metastatic disease, notably the MYC pathway. The heterogeneous 3' fusion partners, particularly transcription factors SOX9 and YAP1 , evoked varying degrees of transcriptomic and cistromic activity that translated into unique phenotypic readouts. Herein we report that cell line activity is subtype-, fusion-, and assay-specific suggesting that the loss of the LBD, the 3' fusion partner, and the cellular landscape all influence fusion activity. Therefore, it will be critical to generate additional data on frequency of the ER fusions, in the context of the clinicopathological features of the tumor. Significance ER fusion proteins exhibit diverse mechanisms of endocrine resistance in breast cancer cell lines representing the no special type (NST) and invasive lobular cancer (ILC) subtypes. Our emphasize upon both the shared and unique cellular adaptations imparted by ER fusions offers the foundation for further translational research and clinical decision making.
Collapse
|
7
|
Kaur M, Patterson A, Molina-Vega J, Rothschild H, Clelland E, Ewing CA, Mujir F, Esserman LJ, Olopade OI, Mukhtar RA. Area Deprivation Index in Patients with Invasive Lobular Carcinoma of the Breast: Associations with Tumor Characteristics and Outcomes. Cancer Epidemiol Biomarkers Prev 2023; 32:1107-1113. [PMID: 37257200 PMCID: PMC10390860 DOI: 10.1158/1055-9965.epi-22-1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Although investigators have shown associations between socioeconomic status (SES) and outcomes in breast cancer, there is a paucity of such data for invasive lobular carcinoma (ILC), the second most common type of breast cancer. Herein we evaluated the relationship between SES with tumor features and outcomes in stage I to III patients with ILC. METHODS We analyzed a prospectively maintained institutional ILC database and utilized the area deprivation index (ADI) to determine neighborhood adversity, an indicator of SES. We used Cox proportional hazards models in Stata 17.0 to evaluate relationships between ADI quintile (Q), race, body mass index (BMI), clinicopathologic features, treatment type, and event-free survival (EFS). RESULTS Of 804 patients with ILC, 21.4% lived in neighborhoods classified as ADI Q1 (least resource-deprived) and 19.7% in Q5 (most resource-deprived). Higher deprivation was significantly associated with larger tumor size (3.6 cm in Q5 vs. 3.1 cm in Q1), increased presence of lymphovascular invasion (8.9% in Q5 vs. 6.7% in Q1), and decreased use of adjuvant endocrine therapy (67.1% in Q5 vs. 73.6% in Q1). On multivariable analysis, tumor size, receptor subtypes, and omission of adjuvant endocrine therapy were associated with reduced EFS. CONCLUSIONS These data show that patients with ILC and higher ADI experience more aggressive tumors and differences in treatment. More data evaluating the complex relationships between these factors is needed to optimize outcomes for patients with ILC, regardless of SES. IMPACT ADI is associated with differences in patients with ILC.
Collapse
Affiliation(s)
- Mandeep Kaur
- School of Medicine, University of California, San Francisco, California
| | - Anne Patterson
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, California
| | - Julissa Molina-Vega
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, California
| | | | - Elle Clelland
- School of Medicine, University of California, San Francisco, California
| | - Cheryl A. Ewing
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, California
| | - Firdows Mujir
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, California
| | - Laura J. Esserman
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, California
| | | | - Rita A. Mukhtar
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, California
| |
Collapse
|
8
|
Trillo P, Sandoval J, Trapani D, Nicolò E, Zagami P, Giugliano F, Tarantino P, Vivanet G, Ascione L, Friedlaender A, Esposito A, Criscitiello C, Curigliano G. Evolution of biological features of invasive lobular breast cancer: comparison between primary tumor and metastases. Eur J Cancer 2023; 185:119-130. [PMID: 36989828 DOI: 10.1016/j.ejca.2023.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Invasive lobular carcinoma (ILC) has unique clinical-biological features. Phenotypical differences between primary tumours (PTs) and metastases (M) have been described for invasive ductal carcinoma, but data on ILC are limited. METHODS We retrospectively analysed patients with recurrent ILC from our institution from 2013 to 2020. We evaluated the discordance of the oestrogen receptor (ER), progesterone receptor (PgR) and HER2 between PT and M, to understand prognostic and therapeutic implications. RESULTS Thirteen percent (n = 91) of all patients had ILC. We observed 15%, 44% and 5% of ER, PgR and HER2 status discordance between PT and M. ER/PgR discordance was related to receptor loss and HER2 mainly due to gain. PT presented a luminal-like phenotype (93%); 6% and 1% were triple-negative (TNBC) and HER2-positive. In M, there was an increase in TNBC (16%) and HER2-positive (5%). Metastasis-free survival and overall survival (OS) were different according to clinical phenotype, with poorer prognosis for HER2+ and TNBC (p < 0.001); OS after metastatic progression did not differ across phenotypes (p = 0.079). In luminal-like ILC (n = 85) at diagnosis, we found that OS after relapse was poorer in patients experiencing a phenotype switch to TNBC but improved in patients with HER2 gain (p = 0.0028). Poorer survival was reported in patients with a PgR and/or ER expression loss of ≥25%. There was HER2-low enrichment in M1 (from 37% to 58%): this change was not associated with OS (p > 0.05). CONCLUSION Our results suggest that phenotype switch after metastatic progression may be associated with patients' outcomes. Tumour biopsy in recurrent ILC could drive treatment decision-making, with prognostic implications.
Collapse
Affiliation(s)
- Pamela Trillo
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Josè Sandoval
- Unit of Population Epidemiology, Division and Department of Primary Care Medicine, 1205 Geneva University Hospitals, Geneva, Switzerland; Department of Oncology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Dario Trapani
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Eleonora Nicolò
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Paola Zagami
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Federica Giugliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Paolo Tarantino
- Breast Oncology Program, Dana-Farber Cancer Institute, 02115 Boston, USA; Harvard Medical School, 02115 Boston, USA
| | - Grazia Vivanet
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Liliana Ascione
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Alex Friedlaender
- Department of Oncology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Angela Esposito
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy.
| |
Collapse
|
9
|
Gezer U, Bronkhorst AJ, Holdenrieder S. The Clinical Utility of Droplet Digital PCR for Profiling Circulating Tumor DNA in Breast Cancer Patients. Diagnostics (Basel) 2022; 12:diagnostics12123042. [PMID: 36553049 PMCID: PMC9776872 DOI: 10.3390/diagnostics12123042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Breast cancer is the most common cancer affecting women worldwide. It is a malignant and heterogeneous disease with distinct molecular subtypes, which has prognostic and predictive implications. Circulating tumor DNA (ctDNA), cell-free fragmented tumor-derived DNA in blood plasma, is an invaluable source of specific cancer-associated mutations and holds great promise for the development of minimally invasive diagnostic tests. Furthermore, serial monitoring of ctDNA over the course of systemic and targeted therapies not only allows unparalleled efficacy assessments but also enables the identification of patients who are at risk of progression or recurrence. Droplet digital PCR (ddPCR) is a powerful technique for the detection and monitoring of ctDNA. Due to its relatively high accuracy, sensitivity, reproducibility, and capacity for absolute quantification, it is increasingly used as a tool for managing cancer patients through liquid biopsies. In this review paper, we gauge the clinical utility of ddPCR as a technique for mutational profiling in breast cancer patients and focus on HER2, PIK3CA, ESR1, and TP53, which represent the most frequently mutated genes in breast cancers.
Collapse
Affiliation(s)
- Ugur Gezer
- Institute of Oncology, Department of Basic Oncology, Istanbul University, Istanbul 34093, Turkey
| | - Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich Technical University Munich, 80636 München, Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich Technical University Munich, 80636 München, Germany
- Correspondence:
| |
Collapse
|
10
|
Singer CF, Holst F, Steurer S, Burandt EC, Lax SF, Jakesz R, Rudas M, Stöger H, Greil R, Sauter G, Filipits M, Simon R, Gnant M. Estrogen Receptor Alpha Gene Amplification Is an Independent Predictor of Long-Term Outcome in Postmenopausal Patients with Endocrine-Responsive Early Breast Cancer. Clin Cancer Res 2022; 28:4112-4120. [PMID: 35920686 PMCID: PMC9475247 DOI: 10.1158/1078-0432.ccr-21-4328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 07/08/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Estrogen receptor (ER) expression is a prognostic parameter in breast cancer, and a prerequisite for the use of endocrine therapy. In ER+ early breast cancer, however, no receptor-associated biomarker exists that identifies patients with a particularly favorable outcome. We have investigated the value of ESR1 amplification in predicting the long-term clinical outcome in tamoxifen-treated postmenopausal women with endocrine-responsive breast cancer. EXPERIMENTAL DESIGN 394 patients who had been randomized into the tamoxifen-only arm of the prospective randomized ABCSG-06 trial of adjuvant endocrine therapy with available formalin-fixed, paraffin-embedded tumor tissue were included in this analysis. IHC ERα expression was evaluated both locally and in a central lab using the Allred score, while ESR1 gene amplification was evaluated by FISH analysis using the ESR1/CEP6 ratio indicating focal copy number alterations. RESULTS Focal ESR1 copy-number elevations (amplifications) were detected in 187 of 394 (47%) tumor specimens, and were associated with a favorable outcome: After a median follow-up of 10 years, women with intratumoral focal ESR1 amplification had a significantly longer distant recurrence-free survival [adjusted HR, 0.48; 95% confidence interval (CI), 0.26-0.91; P = 0.02] and breast cancer-specific survival (adjusted HR 0.47; 95% CI, 0.27-0.80; P = 0.01) as compared with women without ESR1 amplification. IHC ERα protein expression, evaluated by Allred score, correlated significantly with focal ESR1 amplification (P < 0.0001; χ2 test), but was not prognostic by itself. CONCLUSIONS Focal ESR1 amplification is an independent and powerful predictor for long-term distant recurrence-free and breast cancer-specific survival in postmenopausal women with endocrine-responsive early-stage breast cancer who received tamoxifen for 5 years.
Collapse
Affiliation(s)
- Christian F. Singer
- Department of OB/GYN, Medical University of Vienna, Vienna, Austria.,Corresponding Author: Christian F. Singer, Medical University of Vienna, AKH Wien, Waehringer Guertel 18-20, Vienna 1090, Austria. Phone: 4314-0400-28010, Fax: 4314-0400-23230; E-mail:
| | | | - Frederik Holst
- Department of OB/GYN, Medical University of Vienna, Vienna, Austria.,Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike C. Burandt
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sigurd F. Lax
- Department of Pathology, Medical University of Graz, Graz, Austria.,Hospital Graz II, Graz, Austria.,Johannes Kepler University, School of Medicine, Graz, Austria
| | - Raimund Jakesz
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Margaretha Rudas
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Herbert Stöger
- Department of Medicine, Medical University of Graz, Graz, Austria
| | - Richard Greil
- Salzburg Cancer Research Institute - Center for Clinical and Immunology Trials and Cancer Cluster Salzburg; IIIrd Medical Department, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Filipits
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
11
|
Fimereli D, Venet D, Rediti M, Boeckx B, Maetens M, Majjaj S, Rouas G, Marchio C, Bertucci F, Mariani O, Capra M, Bonizzi G, Contaldo F, Galant C, Van den Eynden G, Salgado R, Biganzoli E, Vincent-Salomon A, Pruneri G, Larsimont D, Lambrechts D, Desmedt C, Brown DN, Rothé F, Sotiriou C. Timing evolution of lobular breast cancer through phylogenetic analysis. EBioMedicine 2022; 82:104169. [PMID: 35882101 PMCID: PMC9309404 DOI: 10.1016/j.ebiom.2022.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Danai Fimereli
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - David Venet
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mattia Rediti
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium; Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Marion Maetens
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samira Majjaj
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghizlane Rouas
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Caterina Marchio
- Department of Medical Sciences, University of Turin, Turin, Italy; FPO-IRCCS Candiolo Cancer Institute, Candiolo, Italy
| | - Francois Bertucci
- Predictive Oncology Laboratory, Institut Paoli-Calmettes, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille Université Marseille, France
| | - Odette Mariani
- Department of Pathology, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Maria Capra
- Biobank for Translational and Digital Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppina Bonizzi
- Biobank for Translational and Digital Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Contaldo
- Biobank for Translational and Digital Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Christine Galant
- Department of Pathology, Cliniques Universitaires Saint Luc, Brussels, Belgium; IREC, Université Catholique de Louvain, Brussels, Belgium
| | | | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium; Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia
| | - Elia Biganzoli
- Department of Biomedical and Clinical Sciences (DIBIC) "L. Sacco" & DSRC, LITA Vialba campus, University of Milan, Milan, Italy
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Giancarlo Pruneri
- Division of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; School of Medicine, University of Milan, Milano, Milan, Italy
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Brussels, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium; Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - David N Brown
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Françoise Rothé
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
12
|
Van Baelen K, Geukens T, Maetens M, Tjan-Heijnen V, Lord CJ, Linn S, Bidard FC, Richard F, Yang WW, Steele RE, Pettitt SJ, Van Ongeval C, De Schepper M, Isnaldi E, Nevelsteen I, Smeets A, Punie K, Voorwerk L, Wildiers H, Floris G, Vincent-Salomon A, Derksen PWB, Neven P, Senkus E, Sawyer E, Kok M, Desmedt C. Current and future diagnostic and treatment strategies for patients with invasive lobular breast cancer. Ann Oncol 2022; 33:769-785. [PMID: 35605746 DOI: 10.1016/j.annonc.2022.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Invasive lobular breast cancer (ILC) is the second most common type of breast cancer after invasive breast cancer of no special type (NST), representing up to 15% of all breast cancers. DESIGN Latest data on ILC are presented, focusing on diagnosis, molecular make-up according to the European Society for Medical Oncology Scale for Clinical Actionability of molecular Targets (ESCAT) guidelines, treatment in the early and metastatic setting and ILC-focused clinical trials. RESULTS At the imaging level, magnetic resonance imaging-based and novel positron emission tomography/computed tomography-based techniques can overcome the limitations of currently used imaging techniques for diagnosing ILC. At the pathology level, E-cadherin immunohistochemistry could help improving inter-pathologist agreement. The majority of patients with ILC do not seem to benefit as much from (neo-)adjuvant chemotherapy as patients with NST, although chemotherapy might be required in a subset of high-risk patients. No differences in treatment efficacy are seen for anti-human epidermal growth factor receptor 2 (HER2) therapies in the adjuvant setting and cyclin-dependent kinases 4 and 6 inhibitors in the metastatic setting. The clinical utility of the commercially available prognostic gene expression-based tests is unclear for patients with ILC. Several ESCAT alterations differ in frequency between ILC and NST. Germline BRCA1 and PALB2 alterations are less frequent in patients with ILC, while germline CDH1 (gene coding for E-cadherin) alterations are more frequent in patients with ILC. Somatic HER2 mutations are more frequent in ILC, especially in metastases (15% ILC versus 5% NST). A high tumour mutational burden, relevant for immune checkpoint inhibition, is more frequent in ILC metastases (16%) than in NST metastases (5%). Tumours with somatic inactivating CDH1 mutations may be vulnerable for treatment with ROS1 inhibitors, a concept currently investigated in early and metastatic ILC. CONCLUSION ILC is a unique malignancy based on its pathological and biological features leading to differences in diagnosis as well as in treatment response, resistance and targets as compared to NST.
Collapse
Affiliation(s)
- K Van Baelen
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; Departments of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - T Geukens
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - M Maetens
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - V Tjan-Heijnen
- Medical Oncology Department, Maastricht University Medical Center (MUMC), School of GROW, Maastricht, The Netherlands
| | - C J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - S Linn
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Departments of Medical Oncology, Amsterdam, The Netherlands; Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - F-C Bidard
- Department of Medical Oncology, Institut Curie, UVSQ/Paris-Saclav University, Paris, France
| | - F Richard
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - W W Yang
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - R E Steele
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - S J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - C Van Ongeval
- Departments of Radiology, UZ Leuven, Leuven, Belgium
| | - M De Schepper
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; Pathology, UZ Leuven, Leuven, Belgium
| | - E Isnaldi
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - A Smeets
- Surgical Oncology, UZ Leuven, Leuven, Belgium
| | - K Punie
- General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - L Voorwerk
- Departments of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H Wildiers
- General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - G Floris
- Pathology, UZ Leuven, Leuven, Belgium
| | | | - P W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Neven
- Departments of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - E Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - E Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - M Kok
- Departments of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C Desmedt
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Mouabbi JA, Hassan A, Lim B, Hortobagyi GN, Tripathy D, Layman RM. Invasive lobular carcinoma: an understudied emergent subtype of breast cancer. Breast Cancer Res Treat 2022; 193:253-264. [DOI: 10.1007/s10549-022-06572-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
|
14
|
Zuo Q, Mogol AN, Liu YJ, Santaliz Casiano A, Chien C, Drnevich J, Imir OB, Kulkoyluoglu-Cotul E, Park NH, Shapiro DJ, Park BH, Ziegler Y, Katzenellenbogen BS, Aranda E, O'Neill JD, Raghavendra AS, Tripathy D, Madak Erdogan Z. Targeting metabolic adaptations in the breast cancer-liver metastatic niche using dietary approaches to improve endocrine therapy efficacy. Mol Cancer Res 2022; 20:923-937. [PMID: 35259269 DOI: 10.1158/1541-7786.mcr-21-0781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
Estrogen receptor-positive (ER+) metastatic tumors contribute to nearly 70% of breast cancer-related deaths. Most patients with ER+ metastatic breast cancer (MBC) undergo treatment with the estrogen receptor antagonist fulvestrant (Fulv) as standard-of-care. Yet, among such patients, metastasis in the liver is associated with reduced overall survival compared to other metastasis sites. The factors underlying the reduced responsiveness of liver metastases to ER-targeting agents remain unknown, impeding the development of more effective treatment approaches to improve outcomes for patients with ER+ liver metastases. We therefore evaluated site-specific changes in MBC cells and determined the mechanisms through which the liver metastatic niche specifically influences ER+ tumor metabolism and drug resistance. We characterized ER activity of MBC cells both in vitro, using a novel system of tissue-specific extracellular matrix hydrogels representing the stroma of ER+ tumor metastatic sites (liver, lung and bone), and in vivo, in liver and lung metastasis mouse models. ER+ metastatic liver tumors and MBC cells grown in liver hydrogels displayed upregulated expression of glucose metabolism enzymes in response to Fulv. Furthermore, differential ERα activity, but not expression, was detected in liver hydrogels. In vivo, increased glucose metabolism led to increased glycogen deposition in liver metastatic tumors, while a fasting-mimicking diet increased efficacy of Fulv treatment to reduce the metastatic burden. Our findings identify a novel mechanism of endocrine resistance driven by the liver tumor microenvironment. Implications: These results may guide the development of dietary strategies to circumvent drug resistance in liver metastasis, with potential applicability in other metastatic diseases.
Collapse
Affiliation(s)
- Qianying Zuo
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ayca Nazli Mogol
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yu-Jeh Liu
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Christine Chien
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jenny Drnevich
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ozan Berk Imir
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | | | - David J Shapiro
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ben Ho Park
- Vanderbilt University, Nashville, TN, United States
| | - Yvonne Ziegler
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | | | | | | | - Debu Tripathy
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
15
|
Sant M, Bernat-Peguera A, Felip E, Margelí M. Role of ctDNA in Breast Cancer. Cancers (Basel) 2022; 14:310. [PMID: 35053474 PMCID: PMC8773730 DOI: 10.3390/cancers14020310] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is currently classified by immunohistochemistry. However, technological advances in the detection of circulating tumor DNA (ctDNA) have made new options available for diagnosis, classification, biological knowledge, and treatment selection. Breast cancer is a heterogeneous disease and ctDNA can accurately reflect this heterogeneity, allowing us to detect, monitor, and understand the evolution of the disease. Breast cancer patients have higher levels of circulating DNA than healthy subjects, and ctDNA can be used for different objectives at different timepoints of the disease, ranging from screening and early detection to monitoring for resistance mutations in advanced disease. In early breast cancer, ctDNA clearance has been associated with higher rates of complete pathological response after neoadjuvant treatment and with fewer recurrences after radical treatments. In metastatic disease, ctDNA can help select the optimal sequencing of treatments. In the future, thanks to new bioinformatics tools, the use of ctDNA in breast cancer will become more frequent, enhancing our knowledge of the biology of tumors. Moreover, deep learning algorithms may also be able to predict breast cancer evolution or treatment sensitivity. In the coming years, continued research and the improvement of liquid biopsy techniques will be key to the implementation of ctDNA analysis in routine clinical practice.
Collapse
Affiliation(s)
- Marta Sant
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain
| | - Adrià Bernat-Peguera
- Badalona Applied Research Group in Oncology (B-ARGO), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Eudald Felip
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain
- Badalona Applied Research Group in Oncology (B-ARGO), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Mireia Margelí
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain
- Badalona Applied Research Group in Oncology (B-ARGO), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
16
|
Sflomos G, Schipper K, Koorman T, Fitzpatrick A, Oesterreich S, Lee AV, Jonkers J, Brunton VG, Christgen M, Isacke C, Derksen PWB, Brisken C. Atlas of Lobular Breast Cancer Models: Challenges and Strategic Directions. Cancers (Basel) 2021; 13:5396. [PMID: 34771558 PMCID: PMC8582475 DOI: 10.3390/cancers13215396] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Invasive lobular carcinoma (ILC) accounts for up to 15% of all breast cancer (BC) cases and responds well to endocrine treatment when estrogen receptor α-positive (ER+) yet differs in many biological aspects from other ER+ BC subtypes. Up to 30% of patients with ILC will develop late-onset metastatic disease up to ten years after initial tumor diagnosis and may experience failure of systemic therapy. Unfortunately, preclinical models to study ILC progression and predict the efficacy of novel therapeutics are scarce. Here, we review the current advances in ILC modeling, including cell lines and organotypic models, genetically engineered mouse models, and patient-derived xenografts. We also underscore four critical challenges that can be addressed using ILC models: drug resistance, lobular tumor microenvironment, tumor dormancy, and metastasis. Finally, we highlight the advantages of shared experimental ILC resources and provide essential considerations from the perspective of the European Lobular Breast Cancer Consortium (ELBCC), which is devoted to better understanding and translating the molecular cues that underpin ILC to clinical diagnosis and intervention. This review will guide investigators who are considering the implementation of ILC models in their research programs.
Collapse
Affiliation(s)
- George Sflomos
- ISREC—Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Koen Schipper
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (T.K.); (P.W.B.D.)
| | - Amanda Fitzpatrick
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.O.); (A.V.L.)
- Magee Women’s Cancer Research Institute, Pittsburgh, PA 15213, USA
- Cancer Biology Program, Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.O.); (A.V.L.)
- Magee Women’s Cancer Research Institute, Pittsburgh, PA 15213, USA
- Cancer Biology Program, Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 1066 CX Amsterdam, The Netherlands
| | - Valerie G. Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK;
| | - Matthias Christgen
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Clare Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| | - Patrick W. B. Derksen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (T.K.); (P.W.B.D.)
| | - Cathrin Brisken
- ISREC—Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| |
Collapse
|
17
|
Cao H, Sun Y, Wang L, Pan Y, Li Z, Liang Y. In silico identification of novel inhibitors targeting the DNA-binding domain of the human estrogen receptor alpha. J Steroid Biochem Mol Biol 2021; 213:105966. [PMID: 34416373 DOI: 10.1016/j.jsbmb.2021.105966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022]
Abstract
The human estrogen receptor alpha (ERα) is an important regulator in breast cancer development and progression. The frequent ERα mutations in the ligand-binding domain (LBD) can increase the resistance of antiestrogen drugs, highlighting the need to develop new drugs to target ERα-positive breast cancer. In this study, we combined molecular docking, molecular dynamics simulations and binding free energy calculations to develop a structure-based virtual screening workflow to identify hit compounds capable of interfering with the recognition of ERα by the specific response element of DNA. A druggable pocket on the DNA binding domain (DBD) of ERα was identified as the potential binding site. The hits binding modes were further analyzed to reveal the structural characteristics of the DBD-inhibitor complexes. The core structure of the lead molecules was synthesized and was found to inhibit the E2-induced cell proliferation in MCF-7 cell lines. These findings provide an insight into the structural basis of ligand-ERα for alternate sites beyond the LBD-based pocket. The core structure proposed in this study could potentially be used as the lead molecule for further rational optimization of the antiestrogen drug structure with stronger binding of DBD and higher activity.
Collapse
Affiliation(s)
- Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yuzhen Sun
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yu Pan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zhunjie Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
18
|
Anderson P, Gadgil R, Johnson WA, Schwab E, Davidson JM. Reducing variability of breast cancer subtype predictors by grounding deep learning models in prior knowledge. Comput Biol Med 2021; 138:104850. [PMID: 34536702 DOI: 10.1016/j.compbiomed.2021.104850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 12/23/2022]
Abstract
Deep learning neural networks have improved performance in many cancer informatics problems, including breast cancer subtype classification. However, many networks experience underspecificationwheremultiplecombinationsofparametersachievesimilarperformance, bothin training and validation. Additionally, certain parameter combinations may perform poorly when the test distribution differs from the training distribution. Embedding prior knowledge from the literature may address this issue by boosting predictive models that provide crucial, in-depth information about a given disease. Breast cancer research provides a wealth of such knowledge, particularly in the form of subtype biomarkers and genetic signatures. In this study, we draw on past research on breast cancer subtype biomarkers, label propagation, and neural graph machines to present a novel methodology for embedding knowledge into machine learning systems. We embed prior knowledge into the loss function in the form of inter-subject distances derived from a well-known published breast cancer signature. Our results show that this methodology reduces predictor variability on state-of-the-art deep learning architectures and increases predictor consistency leading to improved interpretation. We find that pathway enrichment analysis is more consistent after embedding knowledge. This novel method applies to a broad range of existing studies and predictive models. Our method moves the traditional synthesis of predictive models from an arbitrary assignment of weights to genes toward a more biologically meaningful approach of incorporating knowledge.
Collapse
Affiliation(s)
- Paul Anderson
- Department of Computer Science and Software Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Richa Gadgil
- Department of Computer Science and Software Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| | - William A Johnson
- Department of Biology, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Ella Schwab
- Department of Biology, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Jean M Davidson
- Department of Biology, California Polytechnic State University, San Luis Obispo, CA, USA.
| |
Collapse
|
19
|
McCart Reed AE, Kalinowski L, Simpson PT, Lakhani SR. Invasive lobular carcinoma of the breast: the increasing importance of this special subtype. Breast Cancer Res 2021; 23:6. [PMID: 33413533 PMCID: PMC7792208 DOI: 10.1186/s13058-020-01384-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Invasive lobular carcinoma (ILC) is the most common of the breast cancer special types, accounting for up to 15% of all breast cancer cases. ILCs are noted for their lack of E-cadherin function, which underpins their characteristic discohesive growth pattern, with cells arranged in single file and dispersed throughout the stroma. Typically, tumours are luminal in molecular subtype, being oestrogen and progesterone receptor positive, and HER2 negative. Since last reviewing the lobular literature (McCart Reed et al., Breast Cancer Res 17:12, 2015), there has been a considerable increase in research output focused on this tumour type, including studies into the pathology and management of disease, a high-resolution definition of the genomic landscape of tumours as well as the evolution of several potential therapeutic avenues. There abounds a huge amount of new data, which we will review herein.
Collapse
Affiliation(s)
- Amy E McCart Reed
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia.
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia.
| | - Lauren Kalinowski
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
- Department of Histopathology, Sullivan Nicolaides Pathology, Bowen Hills, Brisbane, Australia
| | - Peter T Simpson
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia
| |
Collapse
|
20
|
Palbociclib Plus Fulvestrant or Everolimus Plus Exemestane for Pretreated Advanced Breast Cancer with Lobular Histotype in ER+/HER2- Patients: A Propensity Score-Matched Analysis of a Multicenter Retrospective Patient Series. J Pers Med 2020; 10:jpm10040291. [PMID: 33353132 PMCID: PMC7766166 DOI: 10.3390/jpm10040291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) show meaningful efficacy and tolerability in patients with metastatic breast cancer (MBC), but the optimal sequence of ET has not been established. It is not clear if patients with lobular breast carcinomas (LBC) derive the same benefits when receiving second line CDK4/6i. This retrospective study compared the efficacy of palbociclib plus fulvestrant (PALBO–FUL) with everolimus plus exemestane (EVE–EXE) as second-line ET for hormone-resistant metastatic LBC. From 2013 to 2018, patients with metastatic LBC positivity for estrogen and/or progesterone receptors and HER2/neu negativity, who had relapsed during adjuvant hormonal therapy or first-line hormonal treatment, were enrolled from six centers in Italy in this retrospective study. A total of 74 out of 376 patients (48 treated with PALBO–FUL and 26 with EVE–EXE) with metastatic LBC were eligible for inclusion. Progression-free survival (PFS) was longer in patients receiving EVE–EXE compared with PALBO–FUL (6.1 vs. 4.5 months, univariate HR 0.58, 95% CI 0.35–0.96; p = 0.025). On the propensity score (PS) analysis, PFS was confirmed to be significantly longer for patients treated with EVE–EXE compared to PALBO–FUL (6.0 vs. 4.6 months, p = 0.04). This retrospective analysis suggests that EVE–EXE is more effective than PALBO–FUL for second line ET of metastatic LBC, allowing us to speculate on the optimal therapeutic sequence.
Collapse
|
21
|
Richard F, Majjaj S, Venet D, Rothé F, Pingitore J, Boeckx B, Marchio C, Clatot F, Bertucci F, Mariani O, Galant C, Eynden GVD, Salgado R, Biganzoli E, Lambrechts D, Vincent-Salomon A, Pruneri G, Larsimont D, Sotiriou C, Desmedt C. Characterization of Stromal Tumor-infiltrating Lymphocytes and Genomic Alterations in Metastatic Lobular Breast Cancer. Clin Cancer Res 2020; 26:6254-6265. [PMID: 32943456 DOI: 10.1158/1078-0432.ccr-20-2268] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Invasive lobular carcinoma (ILC) represents the second most common histologic breast cancer subtype after invasive ductal carcinoma (IDC). While primary ILC has been extensively studied, metastatic ILC has been poorly characterized at the genomic and immune level. EXPERIMENTAL DESIGN We retrospectively assembled the multicentric EuroILC series of matched primary and metastatic samples from 94 patients with estrogen receptor (ER)-positive ILC. Stromal tumor-infiltrating lymphocytes (sTILs) were assessed by experienced pathologists. Targeted sequencing and low pass whole-genome sequencing were conducted to detect mutations and copy-number aberrations (CNAs). We compared the frequencies of the alterations in EuroILC with those from patients with ER-positive metastatic ILC (n = 135) and IDC (n = 563) from MSK-IMPACT. RESULTS Low sTIL levels were observed in ILC metastases, with higher levels in the mixed nonclassic histology. Considering ILC metastases from EuroILC and MSK-IMPACT, we observed that >50% of tumors harbor genomic alterations that have previously been associated with endocrine resistance. A matched primary/metastasis comparison in EuroILC revealed mutations (AKT1, ARID1A, ESR1, ERBB2, or NF1) and CNAs (PTEN or NF1 deletion, CYP19A1 amplification) associated with endocrine resistance that were private to the metastasis in 22% (7/32) and 19% (4/21) of patients, respectively. An increase in CDH1, ERBB2, FOXA1, and TBX3 mutations, in CDH1 deletions and a decrease in TP53 mutations was observed in ILC as compared with IDC metastases. CONCLUSIONS ILC metastases harbor genomic alterations that may potentially explain endocrine resistance in a large proportion of patients, and present genomic differences as compared with IDC metastases.
Collapse
Affiliation(s)
- François Richard
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samira Majjaj
- Breast Cancer Translational Research Laboratory, Université Libre de Bruxelles, Institut Jules Bordet, U-CRC, Brussels, Belgium
| | - David Venet
- Breast Cancer Translational Research Laboratory, Université Libre de Bruxelles, Institut Jules Bordet, U-CRC, Brussels, Belgium
| | - Françoise Rothé
- Breast Cancer Translational Research Laboratory, Université Libre de Bruxelles, Institut Jules Bordet, U-CRC, Brussels, Belgium
| | - Julien Pingitore
- Breast Cancer Translational Research Laboratory, Université Libre de Bruxelles, Institut Jules Bordet, U-CRC, Brussels, Belgium
| | - Bram Boeckx
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Caterina Marchio
- Department of Medical Sciences, University of Turin, Turin, Italy.,FPO-IRCCS Candiolo Cancer Institute, Candiolo, Italy
| | - Florian Clatot
- Department of Medical Oncology, Centre Henri-Becquerel, Rouen, France.,Rouen University Hospital, IRON/Inserm U1245, Rouen, France
| | - François Bertucci
- Predictive Oncology Laboratory, Institut Paoli-Calmettes, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France
| | - Odette Mariani
- Department of Pathology, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Christine Galant
- Department of Pathology, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | | | | | - Elia Biganzoli
- Unit of Medical Statistics, Biometry and Bioinformatics "Giulio A. Maccacaro," Department of Clinical Sciences and Community Health, University of Milan, Campus Cascina Rosa, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie, Paris Sciences Lettres Research University, Paris, France
| | - Giancarlo Pruneri
- Division of Pathology, European Institute of Oncology, University of Milan, Milan, Italy.,Division of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,School of Medicine, University of Milan, Milan, Italy
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Université Libre de Bruxelles, Institut Jules Bordet, U-CRC, Brussels, Belgium.
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Pillay P, Moodley K, Vatish M, Moodley J. Exosomal MicroRNAs in Pregnancy Provides Insight into a Possible Cure for Cancer. Int J Mol Sci 2020; 21:ijms21155384. [PMID: 32751127 PMCID: PMC7432616 DOI: 10.3390/ijms21155384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The biological links between cancer and pregnancy are of recent interest due to parallel proliferative, immunosuppressive and invasive mechanisms between tumour and trophoblast development. Therefore, understanding “cancer-like” mechanisms in pregnancy could lead to the development of novel cancer therapeutics, however, little is understood on how tumour and trophoblast cells recapitulate similar molecular mechanisms. Based on our observations from a previous study, it was not only evident that exosomal miRNAs are involved in the pathophysiology of preeclampsia but also contained cancer-specific miRNAs, which suggested that “pseudo-malignant-like” exosomal-mediated mechanisms exist in pregnancy. The presented study therefore aimed to identify exosomal miRNAs (exomiR) in pregnancy which can be repurposed towards preventing tumour metastasis and immunosuppression. It was identified that exomiR-302d-3p, exomiR-223-3p and exomiR-451a, commonly associated with cancer metastasis, were found to be highly expressed in pregnancy. Furthermore, computational merging and meta-analytical pathway analysis (DIANA miRPath) of significantly expressed exomiRs between 38 ± 1.9 vs. 30 ± 1.11 weeks of gestation indicated controlled regulation of biological pathways associated with cancer metastasis and immunosuppression. Therefore, the observations made in this study provide the experimental framework for the repurposing of exosomal miRNA molecular mechanisms in pregnancy towards treating and preventing cancer.
Collapse
Affiliation(s)
- Preenan Pillay
- Pearson Institute of Higher Education, Faculty of Applied Science, Johannesburg 2153, South Africa
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford 38655, UK;
- Correspondence: or ; Tel.: +27-83-4402-486
| | - Kogi Moodley
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Manu Vatish
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford 38655, UK;
| | - Jagidesa Moodley
- Women’s Health and HIV Research Group, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
23
|
Luveta J, Parks RM, Heery DM, Cheung KL, Johnston SJ. Invasive Lobular Breast Cancer as a Distinct Disease: Implications for Therapeutic Strategy. Oncol Ther 2020; 8:1-11. [PMID: 32700069 PMCID: PMC7359988 DOI: 10.1007/s40487-019-00105-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Invasive lobular carcinoma comprises 10-15% of all breast cancers and is increasingly recognised as a distinct and understudied disease compared with the predominant histological subtype, invasive ductal carcinoma. Hallmarks of invasive lobular carcinoma include E-cadherin loss, leading to discohesive morphology with cells proliferating in single-file strands and oestrogen receptor positivity, with favourable response to endocrine therapy. This review summarises the distinct histological and molecular features of invasive lobular carcinoma with focus on diagnostic challenges and the impact on surgical management and medical therapy. Emphasis is placed on recent advances in our understanding of the unique molecular biology of lobular breast cancer and how this is optimising our therapy approach in the clinic.
Collapse
Affiliation(s)
- Jocelyn Luveta
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Ruth M Parks
- Division of Medical Sciences and Graduate Entry Medicine, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - David M Heery
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Kwok-Leung Cheung
- Division of Medical Sciences and Graduate Entry Medicine, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Simon J Johnston
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
24
|
Rinaldi J, Sokol ES, Hartmaier RJ, Trabucco SE, Frampton GM, Goldberg ME, Albacker LA, Daemen A, Manning G. The genomic landscape of metastatic breast cancer: Insights from 11,000 tumors. PLoS One 2020; 15:e0231999. [PMID: 32374727 PMCID: PMC7202592 DOI: 10.1371/journal.pone.0231999] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Metastatic breast cancer is the leading cause of cancer death in women, but the genomics of metastasis in breast cancer are poorly studied. METHODS We explored a set of 11,616 breast tumors, including 5,034 metastases, which had undergone targeted sequencing during standard clinical care. RESULTS Besides the known hotspot mutations in ESR1, we observed a metastatic enrichment of previously unreported, lower-prevalence mutations in the ligand-binding domain, implying that these mutations may also be functional. Furthermore, individual ESR1 hotspots are significantly enriched in specific metastatic tissues and histologies, suggesting functional differences between these mutations. Other alterations enriched across all metastases include loss of function of the CDK4 regulator CDKN1B, and mutations in the transcription factor CTCF. Mutations enriched at specific metastatic sites generally reflect biology of the target tissue and may be adaptations to growth in the local environment. These include PTEN and ASXL1 alterations in brain metastases and NOTCH1 alterations in skin. We observed an enrichment of KRAS, KEAP1, STK11 and EGFR mutations in lung metastases. However, the patterns of other mutations in these tumors indicate that these are misdiagnosed lung primaries rather than breast metastases. CONCLUSIONS An order-of-magnitude increase in samples relative to previous studies allowed us to detect novel genomic characteristics of metastatic cancer and to expand and clarify previous findings.
Collapse
Affiliation(s)
- Jacob Rinaldi
- Department of Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA, United States of America
| | - Ethan S. Sokol
- Foundation Medicine, Cambridge, MA, United States of America
| | | | | | | | | | - Lee A. Albacker
- Foundation Medicine, Cambridge, MA, United States of America
| | - Anneleen Daemen
- Department of Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA, United States of America
| | - Gerard Manning
- Department of Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA, United States of America
| |
Collapse
|
25
|
Kutasovic JR, McCart Reed AE, Sokolova A, Lakhani SR, Simpson PT. Morphologic and Genomic Heterogeneity in the Evolution and Progression of Breast Cancer. Cancers (Basel) 2020; 12:E848. [PMID: 32244556 PMCID: PMC7226487 DOI: 10.3390/cancers12040848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
: Breast cancer is a remarkably complex and diverse disease. Subtyping based on morphology, genomics, biomarkers and/or clinical parameters seeks to stratify optimal approaches for management, but it is clear that every breast cancer is fundamentally unique. Intra-tumour heterogeneity adds further complexity and impacts a patient's response to neoadjuvant or adjuvant therapy. Here, we review some established and more recent evidence related to the complex nature of breast cancer evolution. We describe morphologic and genomic diversity as it arises spontaneously during the early stages of tumour evolution, and also in the context of treatment where the changing subclonal architecture of a tumour is driven by the inherent adaptability of tumour cells to evolve and resist the selective pressures of therapy.
Collapse
Affiliation(s)
- Jamie R. Kutasovic
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Anna Sokolova
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
| |
Collapse
|
26
|
Testa U, Castelli G, Pelosi E. Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments. Med Sci (Basel) 2020; 8:E18. [PMID: 32210163 PMCID: PMC7151639 DOI: 10.3390/medsci8010018] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer in women. There were over two-million new cases in world in 2018. It is the second leading cause of death from cancer in western countries. At the molecular level, breast cancer is a heterogeneous disease, which is characterized by high genomic instability evidenced by somatic gene mutations, copy number alterations, and chromosome structural rearrangements. The genomic instability is caused by defects in DNA damage repair, transcription, DNA replication, telomere maintenance and mitotic chromosome segregation. According to molecular features, breast cancers are subdivided in subtypes, according to activation of hormone receptors (estrogen receptor and progesterone receptor), of human epidermal growth factors receptor 2 (HER2), and or BRCA mutations. In-depth analyses of the molecular features of primary and metastatic breast cancer have shown the great heterogeneity of genetic alterations and their clonal evolution during disease development. These studies have contributed to identify a repertoire of numerous disease-causing genes that are altered through different mutational processes. While early-stage breast cancer is a curable disease in about 70% of patients, advanced breast cancer is largely incurable. However, molecular studies have contributed to develop new therapeutic approaches targeting HER2, CDK4/6, PI3K, or involving poly(ADP-ribose) polymerase inhibitors for BRCA mutation carriers and immunotherapy.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Regina Elena 299, 00161 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
27
|
Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology. MICROMACHINES 2019; 10:mi10060412. [PMID: 31226819 PMCID: PMC6631694 DOI: 10.3390/mi10060412] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Abstract
Recently, droplet-based microfluidic systems have been widely used in various biochemical and molecular biological assays. Since this platform technique allows manipulation of large amounts of data and also provides absolute accuracy in comparison to conventional bioanalytical approaches, over the last decade a range of basic biochemical and molecular biological operations have been transferred to drop-based microfluidic formats. In this review, we introduce recent advances and examples of droplet-based microfluidic techniques that have been applied in biochemistry and molecular biology research including genomics, proteomics and cellomics. Their advantages and weaknesses in various applications are also comprehensively discussed here. The purpose of this review is to provide a new point of view and current status in droplet-based microfluidics to biochemists and molecular biologists. We hope that this review will accelerate communications between researchers who are working in droplet-based microfluidics, biochemistry and molecular biology.
Collapse
|