1
|
Pan JW, Tan ZC, Ng PS, Zabidi MMA, Nur Fatin P, Teo JY, Hasan SN, Islam T, Teoh LY, Jamaris S, See MH, Yip CH, Rajadurai P, Looi LM, Taib NAM, Rueda OM, Caldas C, Chin SF, Lim J, Teo SH. Gene expression signature for predicting homologous recombination deficiency in triple-negative breast cancer. NPJ Breast Cancer 2024; 10:60. [PMID: 39030225 PMCID: PMC11271517 DOI: 10.1038/s41523-024-00671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Triple-negative breast cancers (TNBCs) are a subset of breast cancers that have remained difficult to treat. A proportion of TNBCs arising in non-carriers of BRCA pathogenic variants have genomic features that are similar to BRCA carriers and may also benefit from PARP inhibitor treatment. Using genomic data from 129 TNBC samples from the Malaysian Breast Cancer (MyBrCa) cohort, we developed a gene expression-based machine learning classifier for homologous recombination deficiency (HRD) in TNBCs. The classifier identified samples with HRD mutational signature at an AUROC of 0.93 in MyBrCa validation datasets and 0.84 in TCGA TNBCs. Additionally, the classifier strongly segregated HRD-associated genomic features in TNBCs from TCGA, METABRIC, and ICGC. Thus, our gene expression classifier may identify triple-negative breast cancer patients with homologous recombination deficiency, suggesting an alternative method to identify individuals who may benefit from treatment with PARP inhibitors or platinum chemotherapy.
Collapse
Affiliation(s)
- Jia-Wern Pan
- Cancer Research Malaysia, Subang Jaya, Malaysia.
| | | | - Pei-Sze Ng
- Cancer Research Malaysia, Subang Jaya, Malaysia
| | | | | | | | | | - Tania Islam
- Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Li-Ying Teoh
- Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Suniza Jamaris
- Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Mee-Hoong See
- Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | | | - Pathmanathan Rajadurai
- Subang Jaya Medical Centre, Subang Jaya, Malaysia
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Malaysia
| | - Lai-Meng Looi
- Department of Pathology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Oscar M Rueda
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Robinson Way, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Joanna Lim
- Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Malaysia
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Abdulkareem AA, Shirah BH, Bagabir HA, Haque A, Naseer MI. Whole exome sequencing of a novel homozygous missense variant in PALB2 gene leading to Fanconi anaemia complementation group. Biomed Rep 2024; 20:67. [PMID: 38476606 PMCID: PMC10928473 DOI: 10.3892/br.2024.1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024] Open
Abstract
Partner and localiser of BRCA2 (PALB2), also known as FANCN, is a key tumour suppressor gene in maintaining genome integrity. Monoallelic mutations of PALB2 are associated with breast and overian cancers, while bi-allelic mutations cause Fanconi anaemia (FA). In the present study, whole exome sequencing (WES) identified a novel homozygous missense variant, NM_024675.3: c.3296C>G (p.Thr1099Arg) in PALB2 gene (OMIM: 610355) that caused FA with mild pulmonary valve stenosis and dysmorphic and atypical features, including lymphangiectasia, non-immune hydrops fetalis and right-sided pleural effusion in a preterm female baby. WES results were further validated by Sanger sequencing. WES improves the screening and detection of novel and causative genetic variants to improve management of disease. To the best of our knowledge, the present study is the first reported FA case in a Saudi family with phenotypic atypical FA features. The results support the role of PALB2 gene and pathogenic variants that may cause clinical presentation of FA. Furthermore, the present results may establish a disease database, providing a groundwork for understanding the key genomic regions to control diseases resulting from consanguinity.
Collapse
Affiliation(s)
- Angham Abdulrhman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bader H. Shirah
- Department of Neuroscience, King Faisal Specialist Hospital and Research Centre, Jeddah 11211, Saudi Arabia
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Absarul Haque
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Zhang J, Guo F, Li C, Wang Y, Wang J, Sun F, Zhou Y, Ma F, Zhang B, Qian H. Loss of TTC17 promotes breast cancer metastasis through RAP1/CDC42 signaling and sensitizes it to rapamycin and paclitaxel. Cell Biosci 2023; 13:50. [PMID: 36895029 PMCID: PMC9996991 DOI: 10.1186/s13578-023-01004-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Breast cancer (BC) metastasis is the leading cause of poor prognosis and therapeutic failure. However, the mechanisms underlying cancer metastasis are far from clear. METHODS We screened candidate genes related to metastasis through genome-wide CRISPR screening and high-throughput sequencing of patients with metastatic BC, followed by a panel of metastatic model assays. The effects of tetratricopeptide repeat domain 17 (TTC17) on migration, invasion, and colony formation ability together with the responses to anticancer drugs were investigated in vitro and in vivo. The mechanism mediated by TTC17 was determined by RNA sequencing, Western blotting, immunohistochemistry, and immunofluorescence. The clinical significance of TTC17 was evaluated using BC tissue samples combined with clinicopathological data. RESULTS We identified the loss of TTC17 as a metastasis driver in BC, and its expression was negatively correlated with malignancy and positively correlated with patient prognosis. TTC17 loss in BC cells promoted their migration, invasion, and colony formation capacity in vitro and lung metastasis in vivo. Conversely, overexpressing TTC17 suppressed these aggressive phenotypes. Mechanistically, TTC17 knockdown in BC cells resulted in the activation of the RAP1/CDC42 pathway along with a disordered cytoskeleton in BC cells, and pharmacological blockade of CDC42 abolished the potentiation of motility and invasiveness caused by TTC17 silencing. Research on BC specimens demonstrated reduced TTC17 and increased CDC42 in metastatic tumors and lymph nodes, and low TTC17 expression was linked to more aggressive clinicopathologic characteristics. Through screening the anticancer drug library, the CDC42 inhibitor rapamycin and the microtubule-stabilizing drug paclitaxel showed stronger inhibition of TTC17-silenced BC cells, which was confirmed by more favorable efficacy in BC patients and tumor-bearing mice receiving rapamycin or paclitaxel in the TTC17Low arm. CONCLUSIONS TTC17 loss is a novel factor promoting BC metastasis, that enhances migration and invasion by activating RAP1/CDC42 signaling and sensitizes BC to rapamycin and paclitaxel, which may improve stratified treatment strategies under the concept of molecular phenotyping-based precision therapy of BC.
Collapse
Affiliation(s)
- Jingyao Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fengzhu Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fangzhou Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Bailin Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Valentini V, Silvestri V, Bucalo A, Conti G, Karimi M, Di Francesco L, Pomati G, Mezi S, Cerbelli B, Pignataro MG, Nicolussi A, Coppa A, D’Amati G, Giannini G, Ottini L. Molecular profiling of male breast cancer by multigene panel testing: Implications for precision oncology. Front Oncol 2023; 12:1092201. [PMID: 36686738 PMCID: PMC9854133 DOI: 10.3389/fonc.2022.1092201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Compared with breast cancer (BC) in women, BC in men is a rare disease with genetic and molecular peculiarities. Therapeutic approaches for male BC (MBC) are currently extrapolated from the clinical management of female BC, although the disease does not exactly overlap in males and females. Data on specific molecular biomarkers in MBC are lacking, cutting out male patients from more appropriate therapeutic strategies. Growing evidence indicates that Next Generation Sequencing (NGS) multigene panel testing can be used for the detection of predictive molecular biomarkers, including Tumor Mutational Burden (TMB) and Microsatellite Instability (MSI). Methods In this study, NGS multigene gene panel sequencing, targeting 1.94 Mb of the genome at 523 cancer-relevant genes (TruSight Oncology 500, Illumina), was used to identify and characterize somatic variants, Copy Number Variations (CNVs), TMB and MSI, in 15 Formalin-Fixed Paraffin-Embedded (FFPE) male breast cancer samples. Results and discussion A total of 40 pathogenic variants were detected in 24 genes. All MBC cases harbored at least one pathogenic variant. PIK3CA was the most frequently mutated gene, with six (40.0%) MBCs harboring targetable PIK3CA alterations. CNVs analysis showed copy number gains in 22 genes. No copy number losses were found. Specifically, 13 (86.7%) MBCs showed gene copy number gains. MYC was the most frequently amplified gene with eight (53.3%) MBCs showing a median fold-changes value of 1.9 (range 1.8-3.8). A median TMB value of 4.3 (range 0.8-12.3) mut/Mb was observed, with two (13%) MBCs showing high-TMB. The median percentage of MSI was 2.4% (range 0-17.6%), with two (13%) MBCs showing high-MSI. Overall, these results indicate that NGS multigene panel sequencing can provide a comprehensive molecular tumor profiling in MBC. The identification of targetable molecular alterations in more than 70% of MBCs suggests that the NGS approach may allow for the selection of MBC patients eligible for precision/targeted therapy.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mina Karimi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Linda Di Francesco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Mezi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruna Cerbelli
- Department of Medical-Surgical Sciences and Biotechnologies Sapienza University of Rome, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Arianna Nicolussi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia D’Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy,Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy,*Correspondence: Laura Ottini,
| |
Collapse
|
5
|
Lim BWX, Li N, Mahale S, McInerny S, Zethoven M, Rowley SM, Huynh J, Wang T, Lee JEA, Friedman M, Devereux L, Scott RJ, Sloan EK, James PA, Campbell IG. Somatic inactivation of breast cancer predisposition genes in tumors associated with pathogenic germline variants. J Natl Cancer Inst 2022; 115:181-189. [PMID: 36315097 PMCID: PMC9905963 DOI: 10.1093/jnci/djac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Breast cancers (BCs) that arise in individuals heterozygous for a germline pathogenic variant in a susceptibility gene, such as BRCA1 and BRCA2, PALB2, and RAD51C, have been shown to exhibit biallelic loss in the respective genes and be associated with triple-negative breast cancer (TNBC) and distinctive somatic mutational signatures. Tumor sequencing thus presents an orthogonal approach to assess the role of candidate genes in BC development. METHODS Exome sequencing was performed on paired normal-breast tumor DNA from 124 carriers of germline loss-of-function (LoF) or missense variant carriers in 15 known and candidate BC predisposition genes identified in the BEACCON case-control study. Biallelic inactivation and association with tumor genome features including mutational signatures and homologous recombination deficiency (HRD) score were investigated. RESULTS BARD1-carrying TNBC (4 of 5) displayed biallelic loss and associated high HRD scores and mutational signature 3, as did a RAD51D-carrying TNBC and ovarian cancer. Biallelic loss was less frequent in BRIP1 BCs (4 of 13) and had low HRD scores. In contrast to other established BC genes, BCs from carriers of CHEK2 LoF (6 of 17) or missense (2 of 20) variant had low rates of biallelic loss. Exploratory analysis of BC from carriers of LoF variants in candidate genes such as BLM, FANCM, PARP2, and RAD50 found little evidence of biallelic inactivation. CONCLUSIONS BARD1 and RAD51D behave as classic BRCA-like predisposition genes with biallelic inactivation, but this was not observed for any of the candidate genes. However, as demonstrated for CHEK2, the absence of biallelic inactivation does not provide definitive evidence against the gene's involvement in BC predisposition.
Collapse
Affiliation(s)
| | - Na Li
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Sakshi Mahale
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Magnus Zethoven
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simone M Rowley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Joanne Huynh
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Theresa Wang
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Jue Er Amanda Lee
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia,Molecular Genomics Core, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Mia Friedman
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Lisa Devereux
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia,Lifepool, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Rodney J Scott
- Discipline of Medical Genetics and The Centre for Cancer Detection and Therapy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia,Division of Molecular Medicine, New South Wales Health Pathology North, Newcastle, New South Wales, Australia
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Ian G Campbell
- Correspondence to: Ian Campbell, PhD, Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia (e-mail: )
| |
Collapse
|
6
|
Kwong A, Shin VY, Ho CYS, Khalid A, Au CH, Chan KKL, Ngan HYS, Chan TL, Ma ESK. Germline PALB2 Mutation in High-Risk Chinese Breast and/or Ovarian Cancer Patients. Cancers (Basel) 2021; 13:4195. [PMID: 34439348 PMCID: PMC8394494 DOI: 10.3390/cancers13164195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
The prevalence of the PALB2 mutation in breast cancer varies across different ethnic groups; hence, it is of intense interest to evaluate the cancer risk and clinical association of the PALB2 mutation in Chinese breast and/or ovarian cancer patients. We performed sequencing with a 6-gene test panel (BRCA1, BRCA2, TP53, PTEN, PALB2, and CDH1) to identify the prevalence of the PALB2 germline mutation among 2631 patients with breast and/or ovarian cancer. In this cohort, 39 mutations were identified with 24 types of mutation variants, where the majority of the mutations were frame-shift mutations and resulted in early termination. We also identified seven novel PALB2 mutations. Most of the PALB2 mutation carriers had breast cancer (36, 92.3%) and were more likely to have family history of breast cancer (19, 48.7%). The majority of the breast tumors were invasive ductal carcinoma (NOS type) (34, 81.0%) and hormonal positive (ER: 32, 84.2%; PR: 23, 60.5%). Pathogenic mutations of PALB2 were found in 39 probands with a mutation frequency of 1.6% and 1% in breast cancer and ovarian cancer patients, respectively. PALB2 mutation carriers were more likely have hormonal positive tumors and were likely to have familial aggregation of breast cancer.
Collapse
Affiliation(s)
- Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong, China; (V.Y.S.); (A.K.)
- University of Hong Kong-Shenzhen Hospital, Hong Kong, China
- Department of Surgery, Hong Kong Sanatorium & Hospital, Hong Kong, China
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China; (T.-L.C.); (E.S.K.M.)
| | - Vivian Y. Shin
- Department of Surgery, The University of Hong Kong, Hong Kong, China; (V.Y.S.); (A.K.)
- University of Hong Kong-Shenzhen Hospital, Hong Kong, China
| | - Cecilia Y. S. Ho
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| | - Aleena Khalid
- Department of Surgery, The University of Hong Kong, Hong Kong, China; (V.Y.S.); (A.K.)
- University of Hong Kong-Shenzhen Hospital, Hong Kong, China
| | - Chun Hang Au
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| | - Karen K. L. Chan
- Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, China; (K.K.L.C.); (H.Y.S.N.)
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, China; (K.K.L.C.); (H.Y.S.N.)
| | - Tsun-Leung Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China; (T.-L.C.); (E.S.K.M.)
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| | - Edmond S. K. Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China; (T.-L.C.); (E.S.K.M.)
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| |
Collapse
|
7
|
Ng PS, Pan JW, Ahmad Zabidi MM, Rajadurai P, Yip CH, Reuda OM, Dunning AM, Antoniou AC, Easton DF, Caldas C, Chin SF, Teo SH. Characterisation of PALB2 tumours through whole-exome and whole-transcriptomic analyses. NPJ Breast Cancer 2021; 7:46. [PMID: 33893315 PMCID: PMC8065101 DOI: 10.1038/s41523-021-00254-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/26/2021] [Indexed: 02/08/2023] Open
Abstract
Rare protein-truncating variants (PTVs) in PALB2 confer increased risk to breast cancer, but relatively few studies have reported the characteristics of tumours with PALB2 PTVs. In this study, we describe molecular characteristics of tumours with either germline or somatic alterations in PALB2. DNA from fresh frozen tumour tissues and matched peripheral blood lymphocytes for 560 breast cancer patients was subjected for whole-exome sequencing (WES), and RNA from tumour tissues was subjected to RNA sequencing (RNA-seq). We found six cases with germline and three with somatic protein-truncating variants in PALB2. The characteristics of tumours in patients with PALB2 PTVs were similar to those with BRCA1 and BRCA2 PTVs, having significantly more somatic alterations, and a high proportion of the mutational signature and genomic scar scores characteristic of deficiencies in homologous recombination (HR), compared to tumours arising in non-carriers. Unlike tumours arising in patients with BRCA1 and BRCA2 PTVs, PALB2 tumours did not have high prevalence of TP53 somatic alterations or an enriched immune microenvironment. In summary, PALB2 tumours show the homologous recombination deficiencies characteristic of BRCA1 and BRCA2 tumours, and highlight the potential clinical relevance of PALB2 mutational status in guiding therapeutic choices.
Collapse
Affiliation(s)
- Pei Sze Ng
- Cancer Research Malaysia, Subang Jaya, Malaysia
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | - Oscar M Reuda
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Robinson Way, Cambridge, UK
- Cambridge Breast Cancer Research Unit, CRUK Cambridge Cancer Centre, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Soo Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Malaysia.
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|