1
|
Li Y, Du M, Jin Z. Generation of ID1/3 knockout human embryonic stem cell lines (WAe009-A-2A and WAe009-A-2B) derived from H9 using CRISPR/Cas9. Stem Cell Res 2024; 81:103569. [PMID: 39342788 DOI: 10.1016/j.scr.2024.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
ID1 and ID3 are the members of the Inhibitor of DNA Binding (ID) protein family, which negatively regulates the basic helix-loop-helix (bHLH) transcription factors by forming heterodimers, are involved in neurodevelopment, cardiovascular development, and tumor metastasis. We created twoID1/3knockout cell lines from a human embryonic stem cell (hESC) line (H9) by CRISPR/Cas9-mediated gene targeting. These cell lines maintain stem cell morphology, a normal karyotype, and the expression of pluripotent marker genes. Additionally, they retain their in vivo differentiation potential. Thecell lines are valuable tools for studying the roles of ID1/3 in neurodevelopment and cardiovascular diseases.
Collapse
Affiliation(s)
- Yihui Li
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Mingxia Du
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Zibing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
2
|
Arianti R, Vinnai BÁ, Alrifai R, Karadsheh G, Al-Khafaji YQ, Póliska S, Győry F, Fésüs L, Kristóf E. Upregulation of inhibitor of DNA binding 1 and 3 is important for efficient thermogenic response in human adipocytes. Sci Rep 2024; 14:28272. [PMID: 39550428 PMCID: PMC11569133 DOI: 10.1038/s41598-024-79634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Brown and beige adipocytes can be activated by β-adrenergic agonist via cAMP-dependent signaling. Performing RNA-sequencing analysis in human cervical area-derived adipocytes, we found that dibutyryl-cAMP, which can mimic in vivo stimulation of browning and thermogenesis, enhanced the expression of browning and batokine genes and upregulated several signaling pathway genes linked to thermogenesis. We observed that the expression of inhibitor of DNA binding and cell differentiation (ID) 1 and particularly ID3 was strongly induced by the adrenergic stimulation. The degradation of ID1 and ID3 elicited by the ID antagonist AGX51 during thermogenic activation prevented the induction of proton leak respiration that reflects thermogenesis and abrogated cAMP analogue-stimulated upregulation of thermogenic genes and mitochondrial complex I, II, and IV subunits, independently of the proximal cAMP-PKA signaling pathway. The presented data suggests that ID proteins contribute to efficient thermogenic response of adipocytes during adrenergic stimulation.
Collapse
Affiliation(s)
- Rini Arianti
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalpinang, 33134, Indonesia
| | - Boglárka Ágnes Vinnai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Rahaf Alrifai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyath Karadsheh
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Yousif Qais Al-Khafaji
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - László Fésüs
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| | - Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
3
|
La HM, Chan AL, Hutchinson AM, Su BYM, Rossello FJ, Schittenhelm RB, Hobbs RM. Functionally redundant roles of ID family proteins in spermatogonial stem cells. Stem Cell Reports 2024; 19:1379-1388. [PMID: 39332405 PMCID: PMC11561458 DOI: 10.1016/j.stemcr.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for sustained sperm production, but SSC regulatory mechanisms and markers remain poorly defined. Studies have suggested that the Id family transcriptional regulator Id4 is expressed in SSCs and involved in SSC maintenance. Here, we used reporter and knockout models to define the expression and function of Id4 in the adult male germline. Within the spermatogonial pool, Id4 reporter expression and inhibitor of DNA-binding 4 (ID4) protein are found throughout the GFRα1+ fraction, comprising the self-renewing population. However, Id4 deletion is tolerated by adult SSCs while revealing roles in meiotic spermatocytes. Cultures of undifferentiated spermatogonia could be established following Id4 deletion. Importantly, ID4 loss in undifferentiated spermatogonia triggers ID3 upregulation, and both ID proteins associate with transcription factor partner TCF3 in wild-type cells. Combined inhibition of IDs in cultured spermatogonia disrupts the stem cell state and blocks proliferation. Our data therefore demonstrate critical but functionally redundant roles of IDs in SSC function.
Collapse
Affiliation(s)
- Hue M La
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC 3800, Australia; University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3000, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ai-Leen Chan
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Ashlee M Hutchinson
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Bianka Y M Su
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Fernando J Rossello
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
4
|
Abbas SA, Hamzah IH. Assessment of ID family proteins expression in colorectal cancer of Iraqi patients. Mol Biol Rep 2024; 51:806. [PMID: 39001993 DOI: 10.1007/s11033-024-09775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most deathly worldwide and third most common cancer, CRC is a very heterogeneous disease where tumors can form by both environmental and genetic risk factors and includes epigenetic and genetic alternations. Inhibitors of DNA binding proteins (ID) are a class of helix-loop-helix transcription regulatory factors; these proteins are considered a family of four highly preserved transcriptional regulators (ID1-4), shown to play significant roles in many processes that are associated with tumor development. ID family plays as negatively dominant antagonists of other essential HLH proteins, concluding the creation of non-functional heterodimers and regulation of the transcription process. MATERIALS AND METHODS 120 Fresh tissue and blood samples Forty (40) samples of fresh tissue and blood were collected from patients diagnosed with CRC, twenty (20) samples were collected from a patient diagnosed as healthy. The (qRT-PCR) method is a sensitive technique for the quantifying of steady-state mRNA levels that used to evaluation the expression levels of ID (1-4) gene. RESULTS The findings indicate downregulation in ID1 in tissue with a highly significant change between patients and control groups, where upregulation in the ID1 gene is shown in blood samples.ID2 gene also demonstrated high significant change where show upregulation in tissue and downregulation in blood sample. ID3 and ID4 genes show downregulation in tissue and blood samples with a significant change in ID3 blood samples between patient and blood groups. CONCLUSION Because of the regulation function of the ID family in many processes, the up or down regulation of IDs genes in tumors Proves how important its tumor development, and therefore those proteins can be used as an indicator for CRC.
Collapse
Affiliation(s)
- Saja Ali Abbas
- Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq.
- Biology department, college of Education for pure sciences-Ibn Al-Haytham, University of Baghdad, Baghdad, Iraq.
| | | |
Collapse
|
5
|
Taylor OB, Patel SP, Hawthorn EC, El-Hodiri HM, Fischer AJ. ID factors regulate the ability of Müller glia to become proliferating neurogenic progenitor-like cells. Glia 2024; 72:1236-1258. [PMID: 38515287 PMCID: PMC11334223 DOI: 10.1002/glia.24523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The purpose of this study was to investigate how ID factors regulate the ability of Müller glia (MG) to reprogram into proliferating MG-derived progenitor cells (MGPCs) in the chick retina. We found that ID1 is transiently expressed by maturing MG (mMG), whereas ID4 is maintained in mMG in embryonic retinas. In mature retinas, ID4 was prominently expressed by resting MG, but following retinal damage ID4 was rapidly upregulated and then downregulated in MGPCs. By contrast, ID1, ID2, and ID3 were low in resting MG and then upregulated in MGPCs. Inhibition of ID factors following retinal damage decreased numbers of proliferating MGPCs. Inhibition of IDs, after MGPC proliferation, significantly increased numbers of progeny that differentiated as neurons. In damaged or undamaged retinas inhibition of IDs increased levels of p21Cip1 in MG. In response to damage or insulin+FGF2 levels of CDKN1A message and p21Cip1 protein were decreased, absent in proliferating MGPCs, and elevated in MG returning to a resting phenotype. Inhibition of notch- or gp130/Jak/Stat-signaling in damaged retinas increased levels of ID4 but not p21Cip1 in MG. Although ID4 is the predominant isoform expressed by MG in the chick retina, id1 and id2a are predominantly expressed by resting MG and downregulated in activated MG and MGPCs in zebrafish retinas. We conclude that ID factors have a significant impact on regulating the responses of MG to retinal damage, controlling the ability of MG to proliferate by regulating levels of p21Cip1, and suppressing the neurogenic potential of MGPCs.
Collapse
Affiliation(s)
- Olivia B. Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Snehal P. Patel
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Evan C. Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Heithem M. El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
6
|
Verdura S, Encinar JA, Gratchev A, Llop-Hernández À, López J, Serrano-Hervás E, Teixidor E, López-Bonet E, Martin-Castillo B, Micol V, Bosch-Barrera J, Cuyàs E, Menendez JA. Silibinin is a suppressor of the metastasis-promoting transcription factor ID3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155493. [PMID: 38484626 DOI: 10.1016/j.phymed.2024.155493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.
Collapse
Affiliation(s)
- Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Júlia López
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eduard Teixidor
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona 17007, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Unit of Clinical Research, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Joaquim Bosch-Barrera
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain; Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain.
| |
Collapse
|
7
|
Choi SH, Jang J, Kim Y, Park CG, Lee SY, Kim H, Kim H. ID1 high/activin A high glioblastoma cells contribute to resistance to anti-angiogenesis therapy through malformed vasculature. Cell Death Dis 2024; 15:292. [PMID: 38658527 PMCID: PMC11043395 DOI: 10.1038/s41419-024-06678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Although bevacizumab (BVZ), a representative drug for anti-angiogenesis therapy (AAT), is used as a first-line treatment for patients with glioblastoma (GBM), its efficacy is notably limited. Whereas several mechanisms have been proposed to explain the acquisition of AAT resistance, the specific underlying mechanisms have yet to be sufficiently ascertained. Here, we established that inhibitor of differentiation 1 (ID1)high/activin Ahigh glioblastoma cell confers resistance to BVZ. The bipotent effect of activin A during its active phase was demonstrated to reduce vasculature dependence in tumorigenesis. In response to a temporary exposure to activin A, this cytokine was found to induce endothelial-to-mesenchymal transition via the Smad3/Slug axis, whereas prolonged exposure led to endothelial apoptosis. ID1 tumors showing resistance to BVZ were established to be characterized by a hypovascular structure, hyperpermeability, and scattered hypoxic regions. Using a GBM mouse model, we demonstrated that AAT resistance can be overcome by administering therapy based on a combination of BVZ and SB431542, a Smad2/3 inhibitor, which contributed to enhancing survival. These findings offer valuable insights that could contribute to the development of new strategies for treating AAT-resistant GBM.
Collapse
Affiliation(s)
- Sang-Hun Choi
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junseok Jang
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonji Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Cheol Gyu Park
- MEDIFIC Inc, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Puyalto A, Rodríguez-Remírez M, López I, Macaya I, Guruceaga E, Olmedo M, Vilalta-Lacarra A, Welch C, Sandiego S, Vicent S, Valencia K, Calvo A, Pio R, Raez LE, Rolfo C, Ajona D, Gil-Bazo I. Trametinib sensitizes KRAS-mutant lung adenocarcinoma tumors to PD-1/PD-L1 axis blockade via Id1 downregulation. Mol Cancer 2024; 23:78. [PMID: 38643157 PMCID: PMC11031964 DOI: 10.1186/s12943-024-01991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The identification of novel therapeutic strategies to overcome resistance to the MEK inhibitor trametinib in mutant KRAS lung adenocarcinoma (LUAD) is a challenge. This study analyzes the effects of trametinib on Id1 protein, a key factor involved in the KRAS oncogenic pathway, and investigates the role of Id1 in the acquired resistance to trametinib as well as the synergistic anticancer effect of trametinib combined with immunotherapy in KRAS-mutant LUAD. METHODS We evaluated the effects of trametinib on KRAS-mutant LUAD by Western blot, RNA-seq and different syngeneic mouse models. Genetic modulation of Id1 expression was performed in KRAS-mutant LUAD cells by lentiviral or retroviral transductions of specific vectors. Cell viability was assessed by cell proliferation and colony formation assays. PD-L1 expression and apoptosis were measured by flow cytometry. The anti-tumor efficacy of the combined treatment with trametinib and PD-1 blockade was investigated in KRAS-mutant LUAD mouse models, and the effects on the tumor immune infiltrate were analyzed by flow cytometry and immunohistochemistry. RESULTS We found that trametinib activates the proteasome-ubiquitin system to downregulate Id1 in KRAS-mutant LUAD tumors. Moreover, we found that Id1 plays a major role in the acquired resistance to trametinib treatment in KRAS-mutant LUAD cells. Using two preclinical syngeneic KRAS-mutant LUAD mouse models, we found that trametinib synergizes with PD-1/PD-L1 blockade to hamper lung cancer progression and increase survival. This anti-tumor activity depended on trametinib-mediated Id1 reduction and was associated with a less immunosuppressive tumor microenvironment and increased PD-L1 expression on tumor cells. CONCLUSIONS Our data demonstrate that Id1 expression is involved in the resistance to trametinib and in the synergistic effect of trametinib with anti-PD-1 therapy in KRAS-mutant LUAD tumors. These findings suggest a potential therapeutic approach for immunotherapy-refractory KRAS-mutant lung cancers.
Collapse
Affiliation(s)
- Ander Puyalto
- Department of Medical Oncology, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - María Rodríguez-Remírez
- Department of Medical Oncology, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Inés López
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Irati Macaya
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - María Olmedo
- Department of Medical Oncology, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain
| | - Anna Vilalta-Lacarra
- Department of Medical Oncology, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain
| | - Connor Welch
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sergio Sandiego
- Department of Oncology, Fundación Instituto Valenciano de Oncología (FIVO), C/Beltrán Báguena 8. 46009, Valencia, Spain
| | - Silvestre Vicent
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Karmele Valencia
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ruben Pio
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
| | - Luis E Raez
- Memorial Cancer Institute, Memorial Healthcare System, Florida Atlantic University (FAU), Pembroke Pines, FL, USA
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Health System, New York, USA
| | - Daniel Ajona
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain.
| | - Ignacio Gil-Bazo
- Department of Medical Oncology, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
- Program in Solid Tumors, Cancer Division, Cima Universidad de Navarra, CCUN, Av. Pio XII, 55, 31008, Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Department of Oncology, Fundación Instituto Valenciano de Oncología (FIVO), C/Beltrán Báguena 8. 46009, Valencia, Spain.
| |
Collapse
|
9
|
Murugesan P, Begum H, Tangutur AD. Inhibitor of DNA binding/differentiation proteins as IDs for pancreatic cancer: Role in pancreatic cancer initiation, development and prognosis. Gene 2023; 853:147092. [PMID: 36464175 DOI: 10.1016/j.gene.2022.147092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
A family of inhibitors of cell differentiation or DNA-binding proteins, known as ID proteins (ID1-4), function as mighty transcription factors in various cellular processes, such as inhibiting differentiation, promoting cell-cycle progression, senescence, angiogenesis, tumorigenesis, and metastasis in cancer. Pancreatic cancer represents the deadliest cancer with the lowest survival rate of 10% due to the diagnosis at an advanced fatal stage and therapeutic resistance. Modestly, the only curative option for this lethal cancer is surgery but is done in less than 15-20% of patients because of the locally aggressive and early metastatic nature. Finding the earliest biomarkers and targeting the various hallmarks of pancreatic cancer can improve the treatment and survival of pancreatic cancer patients. Therefore, herein in this review, we explore in depth the potential roles of ID proteins function in hallmarks of pancreatic cancer, signaling pathways, and its oncogenic and tumor-suppressive effects. Hence, understanding the roles of dysregulated ID proteins would provide new insights into its function in pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Periyasamy Murugesan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Habeebunnisa Begum
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
10
|
Singh S, Sarkar T, Jakubison B, Gadomski S, Spradlin A, Gudmundsson KO, Keller JR. Inhibitor of DNA binding proteins revealed as orchestrators of steady state, stress and malignant hematopoiesis. Front Immunol 2022; 13:934624. [PMID: 35990659 PMCID: PMC9389078 DOI: 10.3389/fimmu.2022.934624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adult mammalian hematopoiesis is a dynamic cellular process that provides a continuous supply of myeloid, lymphoid, erythroid/megakaryocyte cells for host survival. This process is sustained by regulating hematopoietic stem cells (HSCs) quiescence, proliferation and activation under homeostasis and stress, and regulating the proliferation and differentiation of downstream multipotent progenitor (MPP) and more committed progenitor cells. Inhibitor of DNA binding (ID) proteins are small helix-loop-helix (HLH) proteins that lack a basic (b) DNA binding domain present in other family members, and function as dominant-negative regulators of other bHLH proteins (E proteins) by inhibiting their transcriptional activity. ID proteins are required for normal T cell, B cell, NK and innate lymphoid cells, dendritic cell, and myeloid cell differentiation and development. However, recent evidence suggests that ID proteins are important regulators of normal and leukemic hematopoietic stem and progenitor cells (HSPCs). This chapter will review our current understanding of the function of ID proteins in HSPC development and highlight future areas of scientific investigation.
Collapse
Affiliation(s)
- Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Brad Jakubison
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stephen Gadomski
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Andrew Spradlin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Kristbjorn O. Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jonathan R. Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- *Correspondence: Jonathan R. Keller,
| |
Collapse
|
11
|
Koppenhafer SL, Goss KL, Voigt E, Croushore E, Terry WW, Ostergaard J, Gordon PM, Gordon DJ. Inhibitor of DNA binding 2 (ID2) regulates the expression of developmental genes and tumorigenesis in ewing sarcoma. Oncogene 2022; 41:2873-2884. [PMID: 35422476 PMCID: PMC9107507 DOI: 10.1038/s41388-022-02310-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
Abstract
Sarcomas are difficult to treat and the therapy, even when effective, is associated with long-term and life-threatening side effects. In addition, the treatment regimens for many sarcomas, including Ewing sarcoma, rhabdomyosarcoma, and osteosarcoma, are relatively unchanged over the past two decades, indicating a critical lack of progress. Although differentiation-based therapies are used for the treatment of some cancers, the application of this approach to sarcomas has proven challenging. Here, using a CRISPR-mediated gene knockout approach, we show that Inhibitor of DNA Binding 2 (ID2) is a critical regulator of developmental-related genes and tumor growth in vitro and in vivo in Ewing sarcoma tumors. We also identified that homoharringtonine, which is an inhibitor of protein translation and FDA-approved for the treatment of leukemia, decreases the level of the ID2 protein and significantly reduces tumor growth and prolongs mouse survival in an Ewing sarcoma xenograft model. Furthermore, in addition to targeting ID2, homoharringtonine also reduces the protein levels of ID1 and ID3, which are additional members of the ID family of proteins with well-described roles in tumorigenesis, in multiple types of cancer. Overall, these results provide insight into developmental regulation in Ewing sarcoma tumors and identify a novel, therapeutic approach to target the ID family of proteins using an FDA-approved drug.
Collapse
Affiliation(s)
- Stacia L Koppenhafer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ellen Voigt
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Emma Croushore
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - William W Terry
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jason Ostergaard
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Peter M Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
12
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|