1
|
Viart NM, Renault AL, Eon-Marchais S, Jiao Y, Fuhrmann L, El Houdigui SM, Le Gal D, Cavaciuti E, Dondon MG, Beauvallet J, Raynal V, Stoppa-Lyonnet D, Vincent-Salomon A, Andrieu N, Southey MC, Lesueur F. Breast tumors from ATM pathogenic variant carriers display a specific genome-wide DNA methylation profile. Breast Cancer Res 2025; 27:36. [PMID: 40069712 PMCID: PMC11899765 DOI: 10.1186/s13058-025-01988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The ataxia-telangiectasia mutated (ATM) kinase phosphorylates and activates several downstream targets that are essential for DNA damage repair, cell cycle inhibition and apoptosis. Germline biallelic inactivation of the ATM gene causes ataxia-telangiectasia (A-T), and heterozygous pathogenic variant (PV) carriers are at increased risk of cancer, notably breast cancer. This study aimed to investigate whether DNA methylation profiling can be useful as a biomarker to identify tumors arising in ATM PV carriers, which may help for the management and optimal tailoring of therapies of these patients. METHODS Breast tumor enriched DNA was prepared from 2 A-T patients, 27 patients carrying an ATM PV, 6 patients carrying a variant of uncertain clinical significance and 484 noncarriers enrolled in epidemiological studies conducted in France and Australia to investigate genetic and nongenetic factors involved in breast cancer susceptibility. Genome-wide DNA methylation analysis was performed using the Illumina Infinium HumanMethylation EPIC and 450K BeadChips. Correlation between promoter methylation and gene expression was assessed for 10 tumors for which transcriptomic data were available. RESULTS We found that the ATM promoter was hypermethylated in 62% of tumors of heterozygous PV carriers compared to the mean methylation level of ATM promoter in tumors of noncarriers. Gene set enrichment analyses identified 47 biological pathways enriched in hypermethylated genes involved in neoplastic, neurodegenerative and metabolic-related pathways in tumor of PV carriers. Among the 327 differentially methylated promoters, promoters of ARHGAP40, SCGB3A1 (HIN-1), and CYBRD1 (DCYTB) were hypermethylated and associated with a lower gene expression in these tumors. Moreover, using three different deep learning algorithms (logistic regression, random forest and XGBoost), we identified a set of 27 additional biomarkers predictive of ATM status, which could be used in the future to provide evidence for or against pathogenicity in ATM variant classification strategies. CONCLUSIONS We showed that breast tumors that arise in women who carry an ATM PV display a specific genome-wide DNA methylation profile. Specifically, the methylation pattern of 27 key gene promoters was predictive of ATM PV status of the women. These genes may also represent new medical prevention and therapeutic targets for these women.
Collapse
Affiliation(s)
- Nicolas M Viart
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Anne-Laure Renault
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
- Monash University, Clayton, VIC; University of Melbourne, Parkville, VIC, Australia
| | | | - Yue Jiao
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | | | | | - Dorothée Le Gal
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Eve Cavaciuti
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | | | - Juana Beauvallet
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Virginie Raynal
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL University, Paris, France
| | | | | | - Nadine Andrieu
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Melissa C Southey
- Monash University, Clayton, VIC; University of Melbourne, Parkville, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Fabienne Lesueur
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France.
| |
Collapse
|
2
|
Fehlberg Z, Fisher L, Liu C, Kugenthiran N, Milne RL, Young MA, Willis A, Southey MC, Goranitis I, Best S. Using a behaviour-change approach to support uptake of population genomic screening and management options for breast or prostate cancer. Eur J Hum Genet 2025; 33:108-120. [PMID: 39532988 PMCID: PMC11711511 DOI: 10.1038/s41431-024-01729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
As the possibility of implementing population genomic screening programs for the risk of developing hereditary cancers in health systems increases, understanding how to support individuals who wish to have genomic screening is essential. This qualitative study aimed to link public perceived barriers to a) taking up the offer of population genomic screening for breast or prostate cancer risk and b) taking up risk-management options following their result, with possible theory-informed behaviour-change approaches that may support implementation. Ten focus groups were conducted with a total of 25 members of the Australian public to identify and then categorise barriers within the behaviour-change Capability, Opportunity, Motivation - Behaviour (COM-B) model. Ten COM-B categorised barriers were identified as perceived influences on an individual's intentions to take-up the offer, including Capability (e.g., low public awareness), Opportunity (e.g., inconvenient sample collection procedure) and Motivation (e.g., genomic screening not perceived as relevant to an individual). Ten barriers for taking up risk-management options included Motivation (e.g., concerns about adverse health impact) and Opportunity (e.g., social opportunity and cost incurred to the individual). Our findings demonstrate that a nuanced approach is required to support people to take-up the offer of population genomic screening and, where appropriate, to adopt risk-management options. Even amongst participants who were enthusiastic about a population genomic screening program, needs were varied, demanding a range of implementation strategies. Promulgating equitable uptake of genomic screening and management options for breast and prostate cancer risk will require a needs-based approach.
Collapse
Affiliation(s)
- Zoe Fehlberg
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Louise Fisher
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Cun Liu
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Nathasha Kugenthiran
- Genomics in Society, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Mary-Anne Young
- Clinical Translation & Engagement, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
| | - Amanda Willis
- Clinical Translation & Engagement, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Ilias Goranitis
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Stephanie Best
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- The University of Melbourne, School of Health Sciences, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Shumilova S, Danishevich A, Nikolaev S, Krasnov G, Ikonnikova A, Isaeva D, Surzhikov S, Zasedatelev A, Bodunova N, Nasedkina T. High- and Moderate-Risk Variants Among Breast Cancer Patients and Healthy Donors Enrolled in Multigene Panel Testing in a Population of Central Russia. Int J Mol Sci 2024; 25:12640. [PMID: 39684352 PMCID: PMC11641773 DOI: 10.3390/ijms252312640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Assessments of breast cancer (BC) risk in carriers of pathogenic variants identified by gene panel testing in different populations are highly in demand worldwide. We performed target sequencing of 78 genes involved in DNA repair in 860 females with BC and 520 age- and family history-matched controls from Central Russia. Among BC patients, 562/860 (65.3%) were aged 50 years or less at the time of diagnosis. In total, 190/860 (22%) BC patients were carriers of 198 pathogenic/likely pathogenic (P/LP) variants in 30 genes, while among controls, 32/520 (6.2%) carriers of P/LP variants in 17 genes were identified. The odds ratio [95% confidence interval] was 16.3 [4.0-66.7] for BRCA1; 12.0 [2.9-45.9] for BRCA2; and 7.3 [0.9-56.7] for ATM (p < 0.05). Previously undescribed BRCA1/2, ATM, and PALB2 variants, as well as novel recurrent mutations, were identified. The contribution to BC susceptibility of truncating variants in the genes BARD1, RAD50, RAD51C, NBEAL1 (p. E1155*), and XRCC2 (p. P32fs) was evaluated. The BLM, NBN, and MUTYH genes did not demonstrate associations with BC risk. Finding deleterious mutations in BC patients is important for diagnosis and management; in controls, it opens up the possibility of prevention and early diagnostics.
Collapse
Affiliation(s)
- Syuykum Shumilova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Anastasia Danishevich
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Anna Ikonnikova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Darya Isaeva
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Sergei Surzhikov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Alexander Zasedatelev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| |
Collapse
|
4
|
De Sousa SMC, McCormack A, Orsmond A, Shen A, Yates CJ, Clifton-Bligh R, Santoreneos S, King J, Feng J, Toubia J, Torpy DJ, Scott HS. Increased Prevalence of Germline Pathogenic CHEK2 Variants in Individuals With Pituitary Adenomas. J Clin Endocrinol Metab 2024; 109:2720-2728. [PMID: 38651569 PMCID: PMC11479685 DOI: 10.1210/clinem/dgae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
CONTEXT CHEK2 is a cell cycle checkpoint regulator gene with a long-established role as a clinically relevant, moderate risk breast cancer predisposition gene, with greater risk ascribed to truncating variants than missense variants. OBJECTIVE To assess the rate and pathogenicity of CHEK2 variants amongst individuals with pituitary adenomas (PAs). METHODS We assessed 165 individuals with PAs for CHEK2 variants. The study population comprised a primary cohort of 29 individuals who underwent germline and tumor whole-exome sequencing, and a second, independent cohort of 136 individuals who had a targeted next-generation sequencing panel performed on both germline and tumor DNA (n = 52) or germline DNA alone (n = 84). RESULTS We identified rare, coding, nonsynonymous germline CHEK2 variants amongst 3 of 29 (10.3%) patients in our primary cohort, and in 5 of 165 (3.0%) patients overall, with affected patients having a range of PA types (prolactinoma, thyrotropinoma, somatotropinoma, and nonfunctioning PA). No somatic variants were identified. Two variants were definitive null variants (c.1100delC, c.444 + 1G > A), classified as pathogenic. Two variants were missense variants (p.Asn186His, p.Thr476Met), classified as likely pathogenic. Even when considering the null variants only, the rate of CHEK2 variants was higher in our cohort compared to national control data (1.8% vs 0.5%; P = .049). CONCLUSION This is the first study to suggest a role for the breast cancer predisposition gene, CHEK2, in pituitary tumorigenesis, with pathogenic/likely pathogenic variants found in 3% of patients with PAs. As PAs are relatively common and typically lack classic autosomal dominant family histories, risk alleles-such as these variants found in CHEK2-might be a significant contributor to PA risk in the general population.
Collapse
Affiliation(s)
- Sunita M C De Sousa
- Endocrine & Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- South Australian Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Ann McCormack
- Department of Endocrinology, St Vincent's Hospital, Sydney, NSW 2000, Australia
- Hormones and Cancer Group, Garvan Institute of Medical Research, Sydney, NSW 2000, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2000, Australia
| | - Andreas Orsmond
- Hormones and Cancer Group, Garvan Institute of Medical Research, Sydney, NSW 2000, Australia
| | - Angeline Shen
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christopher J Yates
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Roderick Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW 2000, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
- Department of Endocrinology, Royal North Shore Hospital, Sydney, NSW 2000, Australia
| | - Stephen Santoreneos
- Department of Neurosurgery, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - James King
- Department of Surgery, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jinghua Feng
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, SA 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - John Toubia
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, SA 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - David J Torpy
- Endocrine & Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Hamish S Scott
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, SA 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Morrow A, Speechly C, Young AL, Tucker K, Harris R, Poplawski N, Andrews L, Nguyen Dumont T, Kirk J, Southey MC, Willis A. "Out of the blue": A qualitative study exploring the experiences of women and next of kin receiving unexpected results from BRA-STRAP research gene panel testing. J Genet Couns 2024; 33:973-984. [PMID: 37864663 DOI: 10.1002/jgc4.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/23/2023]
Abstract
In the genomic era, the availability of gene panel and whole genome/exome sequencing is rapidly increasing. Opportunities for providing former patients with new genetic information are also increasing over time and recontacting former patients with new information is likely to become more common. Breast cancer Refined Analysis of Sequence Tests-Risk And Penetrance (BRA-STRAP) is an Australian study of individuals who had previously undertaken BRCA1 and BRCA2 genetic testing, with no pathogenic variants detected. Using a waiver of consent, stored DNA samples were retested using a breast/ovarian cancer gene panel and clinically significant results returned to the patient (or next of kin, if deceased). This qualitative study aimed to explore patient experiences, opinions, and expectations of recontacting in the Australian hereditary cancer setting. Participants were familial cancer clinic patients (or next of kin) who were notified of a new pathogenic variant identified via BRA-STRAP. In-depth, semi-structured interviews were conducted approximately 6 weeks post-result. Interviews were transcribed verbatim and analyzed using an inductive thematic approach. Thirty participants (all female; average age = 57; range 36-84) were interviewed. Twenty-five were probands, and five were next of kin. Most women reported initial shock upon being recontacted with unexpected news, after having obtained a sense of closure related to their initial genetic testing experiences and cancer diagnosis. For most, this initial distress was short-lived, followed by a process of readjustment, meaning-making and adaptation that was facilitated by perceived clinical and personal utility of the information. Women were overall satisfied with the waiver of consent approach and recontacting process. Results are in line with previous studies suggesting that patients have positive attitudes about recontacting. Women in this study valued new genetic information gained from retesting and were satisfied with the BRA-STRAP recontact model. Practice implications to facilitate readjustment and promote psychosocial adaptation were identified.
Collapse
Affiliation(s)
- April Morrow
- Implementation to Impact (i2i), School of Population Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Catherine Speechly
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Alison Luk Young
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kathy Tucker
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
- UNSW Prince of Wales Clinical School, Randwick, New South Wales, Australia
| | - Rebecca Harris
- Westmead Hospital Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead, New South Wales, Australia
| | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Lesley Andrews
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tu Nguyen Dumont
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Judy Kirk
- Westmead Hospital Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead, New South Wales, Australia
| | - Melissa C Southey
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Amanda Willis
- Clinical Translation and Engagement Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Bolze A, Kiser D, Schiabor Barrett KM, Elhanan G, Schnell Blitstein JM, Neveux I, Dabe S, Reed H, Anderson A, Metcalf WJ, Orlova E, Thibodeau I, Telis N, Jiang R, Washington NL, Ferber MJ, Hajek C, Cirulli ET, Grzymski JJ. Combining rare and common genetic variants improves population risk stratification for breast cancer. GENETICS IN MEDICINE OPEN 2024; 2:101826. [PMID: 39669587 PMCID: PMC11613897 DOI: 10.1016/j.gimo.2024.101826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 12/14/2024]
Abstract
Purpose This study aimed to evaluate the performance of different genetic screening approaches to identify women at high risk of breast cancer in the general population. Methods We retrospectively studied 25,591 women with available electronic health records and genetic data, participants in the Healthy Nevada Project. Results Family history of breast cancer was ascertained on or after the record of breast cancer for 78% of women with both, indicating that this risk assessment method is not being properly utilized for early screening. Genetics offered an alternative method for risk assessment. 11.4% of women were identified as high risk based on possessing a predicted loss-of-function (pLOF) variant in BRCA1, BRCA2, or PALB2 (hazard ratio = 10.4, 95% confidence interval: 8.1-13.5) or a pLOF variant in ATM or CHEK2 (hazard ratio = 3.4, CI: 2.4-4.8) or being in the top 10% of the polygenic risk score (PRS) distribution (hazard ratio = 2.4, CI: 2.0-2.8). Moreover, women with a pLOF in ATM or CHEK2 and ranking in the top 50% of the PRS displayed a high risk (39.2% probability of breast cancer at age 70), whereas their counterparts in the bottom 50% of the PRS were not at high risk (14.4% probability at age 70). Conclusion Our findings suggest that a combined monogenic and polygenic approach allowed a better identification of participants with high risk while minimizing false positives.
Collapse
Affiliation(s)
| | - Daniel Kiser
- Department of Internal Medicine, University of Nevada Reno, School of Medicine, Reno, NV
| | | | - Gai Elhanan
- Department of Internal Medicine, University of Nevada Reno, School of Medicine, Reno, NV
| | | | - Iva Neveux
- Department of Internal Medicine, University of Nevada Reno, School of Medicine, Reno, NV
| | | | - Harry Reed
- Department of Internal Medicine, University of Nevada Reno, School of Medicine, Reno, NV
| | | | - William J. Metcalf
- Department of Internal Medicine, University of Nevada Reno, School of Medicine, Reno, NV
| | - Ekaterina Orlova
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | | | | | - Joseph J. Grzymski
- Department of Internal Medicine, University of Nevada Reno, School of Medicine, Reno, NV
- Renown Health, Reno, NV
| |
Collapse
|
7
|
Zanti M, Loizidou MA, O’Mahony DG, Dorling L, Dennis J, Devilee P, Easton DF, Panayiotidis MI, Hadjisavvas A, Michailidou K. Multi-gene panel testing and association analysis in Cypriot breast cancer cases and controls. Front Genet 2023; 14:1248492. [PMID: 37790698 PMCID: PMC10544326 DOI: 10.3389/fgene.2023.1248492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction: It is estimated that around 5% of breast cancer cases carry pathogenic variants in established breast cancer susceptibility genes. However, the underlying prevalence and gene-specific population risk estimates in Cyprus are currently unknown. Methods: We performed sequencing on a population-based case-control study of 990 breast cancer cases and 1094 controls from Cyprus using the BRIDGES sequencing panel. Analyses were conducted separately for protein-truncating and rare missense variants. Results: Protein-truncating variants in established breast cancer susceptibility genes were detected in 3.54% of cases and 0.37% of controls. Protein-truncating variants in BRCA2 and ATM were associated with a high risk of breast cancer, whereas PTVs in BRCA1 and PALB2 were associated with a high risk of estrogen receptor (ER)-negative disease. Among participants with a family history of breast cancer, PTVs in ATM, BRCA2, BRCA1, PALB2 and RAD50 were associated with an increased risk of breast cancer. Furthermore, an additional 19.70% of cases and 17.18% of controls had at least one rare missense variant in established breast cancer susceptibility genes. For BRCA1 and PALB2, rare missense variants were associated with an increased risk of overall and triple-negative breast cancer, respectively. Rare missense variants in BRCA1, ATM, CHEK2 and PALB2 domains, were associated with increased risk of disease subtypes. Conclusion: This study provides population-based prevalence and gene-specific risk estimates for protein-truncating and rare missense variants. These results may have important clinical implications for women who undergo genetic testing and be pivotal for a substantial proportion of breast cancer patients in Cyprus.
Collapse
Affiliation(s)
- Maria Zanti
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria A. Loizidou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denise G. O’Mahony
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leila Dorling
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Douglas F. Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Figlioli G, Billaud A, Wang Q, Bolla MK, Dennis J, Lush M, Kvist A, Adank MA, Ahearn TU, Antonenkova NN, Auvinen P, Behrens S, Bermisheva M, Bogdanova NV, Bojesen SE, Bonanni B, Brüning T, Camp NJ, Campbell A, Castelao JE, Cessna MH, Czene K, Devilee P, Dörk T, Eriksson M, Fasching PA, Flyger H, Gabrielson M, Gago-Dominguez M, García-Closas M, Glendon G, Gómez Garcia EB, González-Neira A, Grassmann F, Guénel P, Hahnen E, Hamann U, Hillemanns P, Hooning MJ, Hoppe R, Howell A, Humphreys K, Jakubowska A, Khusnutdinova EK, Kristensen VN, Lindblom A, Loizidou MA, Lubiński J, Mannermaa A, Maurer T, Mavroudis D, Newman WG, Obi N, Panayiotidis MI, Radice P, Rashid MU, Rhenius V, Ruebner M, Saloustros E, Sawyer EJ, Schmidt MK, Schmutzler RK, Shah M, Southey MC, Tomlinson I, Truong T, van Veen EM, Wendt C, Yang XR, Michailidou K, Dunning AM, Pharoah PDP, Easton DF, Andrulis IL, Evans DG, Hollestelle A, Chang-Claude J, Milne RL, Peterlongo P. Spectrum and Frequency of Germline FANCM Protein-Truncating Variants in 44,803 European Female Breast Cancer Cases. Cancers (Basel) 2023; 15:3313. [PMID: 37444426 DOI: 10.3390/cancers15133313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
FANCM germline protein truncating variants (PTVs) are moderate-risk factors for ER-negative breast cancer. We previously described the spectrum of FANCM PTVs in 114 European breast cancer cases. In the present, larger cohort, we report the spectrum and frequency of four common and 62 rare FANCM PTVs found in 274 carriers detected among 44,803 breast cancer cases. We confirmed that p.Gln1701* was the most common PTV in Northern Europe with lower frequencies in Southern Europe. In contrast, p.Gly1906Alafs*12 was the most common PTV in Southern Europe with decreasing frequencies in Central and Northern Europe. We verified that p.Arg658* was prevalent in Central Europe and had highest frequencies in Eastern Europe. We also confirmed that the fourth most common PTV, p.Gln498Thrfs*7, might be a founder variant from Lithuania. Based on the frequency distribution of the carriers of rare PTVs, we showed that the FANCM PTVs spectra in Southwestern and Central Europe were much more heterogeneous than those from Northeastern Europe. These findings will inform the development of more efficient FANCM genetic testing strategies for breast cancer cases from specific European populations.
Collapse
Affiliation(s)
- Gisella Figlioli
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Amandine Billaud
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Muriel A Adank
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Family Cancer Clinic, 1066 CX Amsterdam, The Netherlands
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040 Minsk, Belarus
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Oncology, Cancer Center, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040 Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789 Bochum, Germany
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, 36312 Vigo, Spain
| | | | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Henrik Flyger
- Department of Breast Surgery, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS) Foundation, IDIS Cancer Genetics and Epidemiology Group, Genomic Medicine Group, Complejo Hospitalario Universitario de Santiago, SERGAS, 15706 Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON M5G 1X5, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Encarna B Gómez Garcia
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Medicine, Institute for Clinical Research and Systems Medicine, Health and Medical University, 14467 Potsdam, Germany
| | - Pascal Guénel
- CESP U1018, Inserm "Exposome, Heredity, Cancer and Health" Team, UVSQ, University Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Ute Hamann
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, 69120 Heidelberg, Germany
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379 Oslo, Norway
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Maria A Loizidou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland
- Kuopio University Hospital, Biobank of Eastern Finland, 70210 Kuopio, Finland
| | - Tabea Maurer
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10 Heraklion, Greece
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Nadia Obi
- University Medical Center Hamburg-Eppendorf, Institute for Medical Biometry and Epidemiology, 20246 Hamburg, Germany
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Paolo Radice
- Unit of 'Predictive Medicine: Molecular Bases of Genetic Risk', Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy
| | - Muhammad U Rashid
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, 69120 Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore 54000, Pakistan
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | | - Elinor J Sawyer
- King's College London, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, London SE1 9RT, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3000, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
| | - Ian Tomlinson
- Cancer Research Centre, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Thérèse Truong
- CESP U1018, Inserm "Exposome, Heredity, Cancer and Health" Team, UVSQ, University Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
| | - Elke M van Veen
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Camilla Wendt
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
9
|
Li S, Nguyen-Dumont T, Southey MC, Hopper JL. RE: Heterozygous BRCA1 and BRCA2 and mismatch repair gene pathogenic variants in children and adolescents with cancer. J Natl Cancer Inst 2023; 115:757-759. [PMID: 37004193 PMCID: PMC10248828 DOI: 10.1093/jnci/djad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Affiliation(s)
- Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, VIC, Australia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
10
|
Nacer DF, Vallon-Christersson J, Nordborg N, Ehrencrona H, Kvist A, Borg Å, Staaf J. Molecular characteristics of breast tumors in patients screened for germline predisposition from a population-based observational study. Genome Med 2023; 15:25. [PMID: 37060015 PMCID: PMC10103478 DOI: 10.1186/s13073-023-01177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/05/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Pathogenic germline variants (PGVs) in certain genes are linked to higher lifetime risk of developing breast cancer and can influence preventive surgery decisions and therapy choices. Public health programs offer genetic screening based on criteria designed to assess personal risk and identify individuals more likely to carry PGVs, dividing patients into screened and non-screened groups. How tumor biology and clinicopathological characteristics differ between these groups is understudied and could guide refinement of screening criteria. METHODS Six thousand six hundred sixty breast cancer patients diagnosed in South Sweden during 2010-2018 were included with available clinicopathological and RNA sequencing data, 900 (13.5%) of which had genes screened for PGVs through routine clinical screening programs. We compared characteristics of screened patients and tumors to non-screened patients, as well as between screened patients with (n = 124) and without (n = 776) PGVs. RESULTS Broadly, breast tumors in screened patients showed features of a more aggressive disease. However, few differences related to tumor biology or patient outcome remained significant after stratification by clinical subgroups or PAM50 subtypes. Triple-negative breast cancer (TNBC), the subgroup most enriched for PGVs, showed the most differences between screening subpopulations (e.g., higher tumor proliferation in screened cases). Significant differences in PGV prevalence were found between clinical subgroups/molecular subtypes, e.g., TNBC cases were enriched for BRCA1 PGVs. In general, clinicopathological differences between screened and non-screened patients mimicked those between patients with and without PGVs, e.g., younger age at diagnosis for positive cases. However, differences in tumor biology/microenvironment such as immune cell composition were additionally seen within PGV carriers/non-carriers in ER + /HER2 - cases, but not between screening subpopulations in this subgroup. CONCLUSIONS Characterization of molecular tumor features in patients clinically screened and not screened for PGVs represents a relevant read-out of guideline criteria. The general lack of molecular differences between screened/non-screened patients after stratification by relevant breast cancer subsets questions the ability to improve the identification of screening candidates based on currently used patient and tumor characteristics, pointing us towards universal screening. Nevertheless, while that is not attained, molecular differences identified between PGV carriers/non-carriers suggest the possibility of further refining patient selection within certain patient subsets using RNA-seq through, e.g., gene signatures. TRIAL REGISTRATION The Sweden Cancerome Analysis Network - Breast (SCAN-B) was prospectively registered at ClinicalTrials.gov under the identifier NCT02306096.
Collapse
Affiliation(s)
- Deborah F Nacer
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Lund, SE-22381, Sweden
| | | | - Nicklas Nordborg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Hans Ehrencrona
- Department of Genetics and Pathology, Laboratory Medicine, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Lund, SE-22381, Sweden.
| |
Collapse
|
11
|
Kotnik U, Maver A, Peterlin B, Lovrecic L. Assessment of pathogenic variation in gynecologic cancer genes in a national cohort. Sci Rep 2023; 13:5307. [PMID: 37002323 PMCID: PMC10066348 DOI: 10.1038/s41598-023-32397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Population-based estimates of pathogenic variation burden in gynecologic cancer predisposition genes are a prerequisite for the development of effective precision public health strategies. This study aims to reveal the burden of pathogenic variants in a comprehensive set of clinically relevant breast, ovarian, and endometrial cancer genes in a large population-based study. We performed a rigorous manual classification procedure to identify pathogenic variants in a panel of 17 gynecologic cancer predisposition genes in a cohort of 7091 individuals, representing 0.35% of the general population. The population burden of pathogenic variants in hereditary gynecologic cancer-related genes in our study was 2.14%. Pathogenic variants in genes ATM, BRCA1, and CDH1 are significantly enriched and the burden of pathogenic variants in CHEK2 is decreased in our population compared to the control population. We have identified a high burden of pathogenic variants in several gynecologic cancer-related genes in the Slovenian population, most importantly in the BRCA1 gene.
Collapse
Affiliation(s)
- Urška Kotnik
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luca Lovrecic
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Li S, MacInnis RJ, Lee A, Nguyen-Dumont T, Dorling L, Carvalho S, Dite GS, Shah M, Luccarini C, Wang Q, Milne RL, Jenkins MA, Giles GG, Dunning AM, Pharoah PDP, Southey MC, Easton DF, Hopper JL, Antoniou AC. Segregation analysis of 17,425 population-based breast cancer families: Evidence for genetic susceptibility and risk prediction. Am J Hum Genet 2022; 109:1777-1788. [PMID: 36206742 PMCID: PMC9606477 DOI: 10.1016/j.ajhg.2022.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023] Open
Abstract
Rare pathogenic variants in known breast cancer-susceptibility genes and known common susceptibility variants do not fully explain the familial aggregation of breast cancer. To investigate plausible genetic models for the residual familial aggregation, we studied 17,425 families ascertained through population-based probands, 86% of whom were screened for pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53 via gene-panel sequencing. We conducted complex segregation analyses and fitted genetic models in which breast cancer incidence depended on the effects of known susceptibility genes and other unidentified major genes and a normally distributed polygenic component. The proportion of familial variance explained by the six genes was 46% at age 20-29 years and decreased steadily with age thereafter. After allowing for these genes, the best fitting model for the residual familial variance included a recessive risk component with a combined genotype frequency of 1.7% (95% CI: 0.3%-5.4%) and a penetrance to age 80 years of 69% (95% CI: 38%-95%) for homozygotes, which may reflect the combined effects of multiple variants acting in a recessive manner, and a polygenic variance of 1.27 (95% CI: 0.94%-1.65), which did not vary with age. The proportion of the residual familial variance explained by the recessive risk component was 40% at age 20-29 years and decreased with age thereafter. The model predicted age-specific familial relative risks consistent with those observed by large epidemiological studies. The findings have implications for strategies to identify new breast cancer-susceptibility genes and improve disease-risk prediction, especially at a young age.
Collapse
Affiliation(s)
- Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Carlton, VIC 3053, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3051, Australia.
| | - Robert J MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Carlton, VIC 3053, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
| | - Andrew Lee
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3051, Australia
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Gillian S Dite
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Carlton, VIC 3053, Australia; Genetic Technologies Ltd., Fitzroy, VIC 3065, Australia
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Carlton, VIC 3053, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Carlton, VIC 3053, Australia
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Carlton, VIC 3053, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3051, Australia
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Carlton, VIC 3053, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| |
Collapse
|