1
|
Li C, Zhang C, Liu W, Liu J, Ma W, Lv C, Xia Z, Chen Y, Gu H, Sun W, Du J, Fan J, Peng X. Clearly fluorescent delineating ER+ breast tumor incisal edge and identifying tiny metastatic tumor foci at high resolution. J Mater Chem B 2024; 12:7135-7142. [PMID: 38952205 DOI: 10.1039/d4tb00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Fluorescence-image guided surgery (FGS) can intraoperatively provide real-time visualization of a tumor incisal edge and high-resolution identification of tumor foci to improve treatment outcomes. In this contribution, we report a fluorescent probe NB-TAM based on intramolecularly folded photoinduced electron transfer (PET), which displayed a prominent turn-on response in the near-infrared (NIR) window upon specific interaction with the estrogen receptor (ER). Significantly, NB-TAM could delineate a clear tumor incisal edge (tumor-to-normal tissue ratio > 5) in a 70-min time window, and was successfully used to guide the facile and precise resection of ER+ breast tumors in mice. To our surprise, NB-TAM was found to be capable of identifying very tiny lung metastatic ER+ breast tumor foci (0.4 × 0.3 mm), and this ultrahigh resolution was essential to effectively promote tumor resection precision and early diagnosis of tiny tumors. These results clearly elucidate the promising application of NB-TAM as a diagnostic agent for intraoperative fluorescence imaging of ER+ breast cancer.
Collapse
Affiliation(s)
- Changle Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Changyu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Wenkai Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Jia Liu
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Wanying Ma
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Chengyuan Lv
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Zhuoran Xia
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Hua Gu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
2
|
Shaheer K, Prabhu BS, Ali HS, Lakshmanan-M D. Breast cancer cells are sensitized by piperine to radiotherapy through estrogen receptor-α mediated modulation of a key NHEJ repair protein- DNA-PK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155126. [PMID: 37913642 DOI: 10.1016/j.phymed.2023.155126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Non-homologous end joining, an important DNA-double-stranded break repair pathway, plays a prominent role in conferring resistance to radiotherapeutic agents, resulting in cancer progression and relapse. PURPOSE The molecular players involved in the radio-sensitizing effects of piperine and many other phytocompounds remain evasive to a great extent. The study is designed to assess if piperine, a plant alkaloid can alter the radioresistance by modulating the expression of non-homologous end-joining machinery. METHODS AND MATERIALS Estrogen receptor-positive/negative, breast cancer cells were cultured to understand the synergetic effects of piperine with radiotherapy. Cisplatin and Bazedoxifene were used as positive controls. Cells were exposed to γ- radiation using Low Dose gamma Irradiator-2000. The piperine effect on Estrogen receptor modulation, DNA-Damage, DNA-Damage-Response, and apoptosis was done by western blotting, immunofluorescence, yeast-based-estrogen-receptor-LacZ-reporter assay, and nuclear translocation analysis. Micronuclei assay was done for DNA damage and genotoxicity, and DSBs were quantified by γH2AX-foci-staining using confocal microscopy. Flow cytometry analysis was done to determine the cell cycle, mitochondrial membrane depolarization, and Reactive oxygen species generation. Pharmacophore analysis and protein-ligand interaction studies were done using Schrodinger software. Synergy was computed by compusyn-statistical analysis. Standard errors/deviation/significance were computed with GraphPad prism. RESULTS Using piperine, we propose a new strategy for overcoming acquired radioresistance through estrogen receptor-mediated modulation of the NHEJ pathway. This is the first comprehensive study elucidating the mechanism of radio sensitizing potential of piperine. Piperine enhanced the radiation-induced cell death and enhanced the expression and activation of Estrogen receptor β, while Estrogen receptor α expression and activation were reduced. In addition, piperine shares common pharmacophore features with most of the known estrogen agonists and antagonists. It altered the estrogen receptor α/β ratio and the expression of estrogen-responsive proteins of DDR and NHEJ pathway. Enhanced expression of DDR proteins, ATM, p53, and P-p53 with low DNA-PK repair complex (comprising of DNA-PKcs/Ku70/Ku80), resulted in the accumulation of radiation-induced DNA double-stranded breaks (as evidenced by MNi and γH2AX-foci) culminating in cell cycle arrest and mitochondrial-pathway of apoptosis. CONCLUSION In conclusion, our study for the first time reported that piperine sensitizes breast cancer cells to radiation by accumulating DNA breaks, through altering the expression of DNA-PK Complex, and DDR proteins, via selective estrogen receptor modulation, offering a novel strategy for combating radioresistance.
Collapse
Affiliation(s)
- Koniyan Shaheer
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Br Swathi Prabhu
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - H Shabeer Ali
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| | - Divya Lakshmanan-M
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| |
Collapse
|
3
|
Schaduangrat N, Homdee N, Shoombuatong W. StackER: a novel SMILES-based stacked approach for the accelerated and efficient discovery of ERα and ERβ antagonists. Sci Rep 2023; 13:22994. [PMID: 38151513 PMCID: PMC10752908 DOI: 10.1038/s41598-023-50393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023] Open
Abstract
The role of estrogen receptors (ERs) in breast cancer is of great importance in both clinical practice and scientific exploration. However, around 15-30% of those affected do not see benefits from the usual treatments owing to the innate resistance mechanisms, while 30-40% will gain resistance through treatments. In order to address this problem and facilitate community-wide efforts, machine learning (ML)-based approaches are considered one of the most cost-effective and large-scale identification methods. Herein, we propose a new SMILES-based stacked approach, termed StackER, for the accelerated and efficient identification of ERα and ERβ inhibitors. In StackER, we first established an up-to-date dataset consisting of 1,996 and 1,207 compounds for ERα and ERβ, respectively. Using the up-to-date dataset, StackER explored a wide range of different SMILES-based feature descriptors and ML algorithms in order to generate probabilistic features (PFs). Finally, the selected PFs derived from the two-step feature selection strategy were used for the development of an efficient stacked model. Both cross-validation and independent tests showed that StackER surpassed several conventional ML classifiers and the existing method in precisely predicting ERα and ERβ inhibitors. Remarkably, StackER achieved MCC values of 0.829-0.847 and 0.712-0.786 in terms of the cross-validation and independent tests, respectively, which were 5.92-8.29 and 1.59-3.45% higher than the existing method. In addition, StackER was applied to determine useful features for being ERα and ERβ inhibitors and identify FDA-approved drugs as potential ERα inhibitors in efforts to facilitate drug repurposing. This innovative stacked method is anticipated to facilitate community-wide efforts in efficiently narrowing down ER inhibitor screening.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Nutta Homdee
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
4
|
Hung SK, Yang HJ, Lee MS, Liu DW, Chen LC, Chew CH, Lin CH, Lee CH, Li SC, Hong CL, Yu CC, Yu BH, Hsu FC, Chiou WY, Lin HY. Molecular subtypes of breast cancer predicting clinical benefits of radiotherapy after breast-conserving surgery: a propensity-score-matched cohort study. Breast Cancer Res 2023; 25:149. [PMID: 38066611 PMCID: PMC10709935 DOI: 10.1186/s13058-023-01747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Based on the molecular expression of cancer cells, molecular subtypes of breast cancer have been applied to classify patients for predicting clinical outcomes and prognosis. However, further evidence is needed regarding the influence of molecular subtypes on the efficacy of radiotherapy (RT) after breast-conserving surgery (BCS), particularly in a population-based context. Hence, the present study employed a propensity-score-matched cohort design to investigate the potential role of molecular subtypes in stratifying patient outcomes for post-BCS RT and to identify the specific clinical benefits that may emerge. METHODS From 2006 to 2019, the present study included 59,502 breast cancer patients who underwent BCS from the Taiwan National Health Insurance Research Database. Propensity scores were utilized to match confounding variables between patients with and without RT within each subtype of breast cancer, namely luminal A, luminal B/HER2-negative, luminal B/HER2-positive, basal-like, and HER2-enriched ones. Several clinical outcomes were assessed, in terms of local recurrence (LR), regional recurrence (RR), distant metastasis (DM), disease-free survival (DFS), and overall survival (OS). RESULTS After post-BCS RT, patients with luminal A and luminal B/HER2-positive breast cancers exhibited a decrease in LR (adjusted hazard ratio [aHR] = 0.18, p < 0.0001; and, 0.24, p = 0.0049, respectively). Furthermore, reduced RR and improved DFS were observed in patients with luminal A (aHR = 0.15, p = 0.0004; and 0.29, p < 0.0001), luminal B/HER2-negative (aHR = 0.06, p = 0.0093; and, 0.46, p = 0.028), and luminal B/HER2-positive (aHR = 0.14, p = 0.01; and, 0.38, p < 0.0001) breast cancers. Notably, OS benefits were found in patients with luminal A (aHR = 0.62, p = 0.002), luminal B/HER2-negative (aHR = 0.30, p < 0.0001), basal-like (aHR = 0.40, p < 0.0001), and HER2-enriched (aHR = 0.50, p = 0.03), but not luminal B/HER2-positive diseases. Remarkably, when considering DM, luminal A patients who received RT demonstrated a lower cumulative incidence of DM than those without RT (p = 0.02). CONCLUSION In patients with luminal A breast cancer who undergo BCS, RT could decrease the likelihood of tumor metastasis. After RT, the tumor's hormone receptor status may predict tumor control regarding LR, RR, and DFS. Besides, the HER2 status of luminal breast cancer patients may serve as an additional predictor of OS after post-BCS RT. However, further prospective studies are required to validate these findings.
Collapse
Affiliation(s)
- Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsuan-Ju Yang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Departments of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chun-Hung Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of General Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Cheng-Hung Lee
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of General Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Szu-Chin Li
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chung-Lin Hong
- Division of Hematology-Oncology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chih-Chia Yu
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Ben-Hui Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chiayi, Taiwan.
| |
Collapse
|
5
|
Taghizadeh-Hesary F, Houshyari M, Farhadi M. Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol 2023; 149:6719-6741. [PMID: 36719474 DOI: 10.1007/s00432-023-04592-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Radiotherapy is a mainstay of cancer treatment. Clinical studies revealed a heterogenous response to radiotherapy, from a complete response to even disease progression. To that end, finding the relative prognostic factors of disease outcomes and predictive factors of treatment efficacy and toxicity is essential. It has been demonstrated that radiation response depends on DNA damage response, cell cycle phase, oxygen concentration, and growth rate. Emerging evidence suggests that altered mitochondrial metabolism is associated with radioresistance. METHODS This article provides a comprehensive evaluation of the role of mitochondria in radiotherapy efficacy and toxicity. In addition, it demonstrates how mitochondria might be involved in the famous 6Rs of radiobiology. RESULTS In terms of this idea, decreasing the mitochondrial metabolism of cancer cells may increase radiation response, and enhancing the mitochondrial metabolism of normal cells may reduce radiation toxicity. Enhancing the normal cells (including immune cells) mitochondrial metabolism can potentially improve the tumor response by enhancing immune reactivation. Future studies are invited to examine the impacts of mitochondrial metabolism on radiation efficacy and toxicity. Improving radiotherapy response with diminishing cancer cells' mitochondrial metabolism, and reducing radiotherapy toxicity with enhancing normal cells' mitochondrial metabolism.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Houshyari
- Clinical Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
O'Leary KA, Bates AM, Jin WJ, Burkel BM, Sriramaneni RN, Emma SE, Nystuen EJ, Sumiec EG, Ponik SM, Morris ZS, Schuler LA. Estrogen receptor blockade and radiation therapy cooperate to enhance the response of immunologically cold ER+ breast cancer to immunotherapy. Breast Cancer Res 2023; 25:68. [PMID: 37312163 PMCID: PMC10265911 DOI: 10.1186/s13058-023-01671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Most patients with estrogen receptor positive (ER+) breast cancer do not respond to immune checkpoint inhibition (ICI); the tumor microenvironment (TME) of these cancers is generally immunosuppressive and contains few tumor-infiltrating lymphocytes. Radiation therapy (RT) can increase tumor inflammation and infiltration by lymphocytes but does not improve responses to ICIs in these patients. This may result, in part, from additional effects of RT that suppress anti-tumor immunity, including increased tumor infiltration by myeloid-derived suppressor cells and regulatory T cells. We hypothesized that anti-estrogens, which are a standard of care for ER+ breast cancer, may ameliorate these detrimental effects of RT by reducing the recruitment/ activation of suppressive immune populations in the radiated TME, increasing anti-tumor immunity and responsiveness to ICIs. METHODS To interrogate the effect of the selective estrogen receptor downregulator, fulvestrant, on the irradiated TME in the absence of confounding growth inhibition by fulvestrant on tumor cells, we used the TC11 murine model of anti-estrogen resistant ER+ breast cancer. Tumors were orthotopically transplanted into immunocompetent syngeneic mice. Once tumors were established, we initiated treatment with fulvestrant or vehicle, followed by external beam RT one week later. We examined the number and activity of tumor infiltrating immune cells using flow cytometry, microscopy, transcript levels, and cytokine profiles. We tested whether fulvestrant improved tumor response and animal survival when added to the combination of RT and ICI. RESULTS Despite resistance of TC11 tumors to anti-estrogen therapy alone, fulvestrant slowed tumor regrowth following RT, and significantly altered multiple immune populations in the irradiated TME. Fulvestrant reduced the influx of Ly6C+Ly6G+ cells, increased markers of pro-inflammatory myeloid cells and activated T cells, and augmented the ratio of CD8+: FOXP3+ T cells. In contrast to the minimal effects of ICIs when co-treated with either fulvestrant or RT alone, combinatorial treatment with fulvestrant, RT and ICIs significantly reduced tumor growth and prolonged survival. CONCLUSIONS A combination of RT and fulvestrant can overcome the immunosuppressive TME in a preclinical model of ER+ breast cancer, enhancing the anti-tumor response and increasing the response to ICIs, even when growth of tumor cells is no longer estrogen sensitive.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Amber M Bates
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Won Jong Jin
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghava N Sriramaneni
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah E Emma
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin J Nystuen
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth G Sumiec
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary S Morris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Linda A Schuler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|