1
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Hadar A, Voinsky I, Parkhomenko O, Puzianowska‐Kuźnicka M, Kuźnicki J, Gozes I, Gurwitz D. Higher ATM expression in lymphoblastoid cell lines from centenarian compared with younger women. Drug Dev Res 2022; 83:1419-1424. [PMID: 35774024 PMCID: PMC9545764 DOI: 10.1002/ddr.21972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
With increased life expectancies in developed countries, cancer rates are becoming more common among the elderly. Cancer is typically driven by a combination of germline and somatic mutations accumulating during an individual's lifetime. Yet, many centenarians reach exceptionally old age without experiencing cancer. It was suggested that centenarians have more robust DNA repair and mitochondrial function, allowing improved maintenance of DNA stability. In this study, we applied real-time quantitative PCR to examine the expression of ATM in lymphoblastoid cell lines (LCLs) from 15 healthy female centenarians and 24 younger female donors aged 21-88 years. We observed higher ATM mRNA expression of in LCLs from female centenarians compared with both women aged 21-48 years (FD = 2.0, p = .0016) and women aged 56-88 years (FD = 1.8, p = .0094. Positive correlation was found between ATM mRNA expression and donors age (p = .0028). Levels of hsa-miR-181a-5p, which targets ATM, were lower in LCLs from centenarians compared with younger women. Our findings suggest a role for ATM in protection from age-related diseases, possibly reflecting more effective DNA repair, thereby reducing somatic mutation accumulation during aging. Further studies are required for analyzing additional DNA repair pathways in biosamples from centenarians and younger age men and women.
Collapse
Affiliation(s)
- Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Olga Parkhomenko
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Monika Puzianowska‐Kuźnicka
- Department of Human EpigeneticsMossakowski Medical Research InstituteWarsawPoland
- Department of Geriatrics and GerontologyMedical Centre of Postgraduate EducationWarsawPoland
| | - Jacek Kuźnicki
- The International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Illana Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
3
|
Carbone M, Pass HI, Ak G, Alexander HR, Baas P, Baumann F, Blakely AM, Bueno R, Bzura. A, Cardillo G, Churpek JE, Dianzani I, De Rienzo A, Emi M, Emri S, Felley-Bosco E, Fennell DA, Flores RM, Grosso F, Hayward NK, Hesdorffer M, Hoang CD, Johansson PA, Kindler HL, Kittaneh M, Krausz T, Mansfield A, Metintas M, Minaai M, Mutti L, Nielsen M, O’Byrne K, Opitz I, Pastorino S, Pentimalli F, de Perrot M, Pritchard A, Ripley RT, Robinson B, Rusch V, Taioli E, Takinishi Y, Tanji M, Tsao AS, Tuncer AM, Walpole S, Wolf A, Yang H, Yoshikawa Y, Zolodnick A, Schrump DS, Hassan R. Medical and surgical care of mesothelioma patients and their relatives carrying germline BAP1 mutations. J Thorac Oncol 2022; 17:873-889. [DOI: 10.1016/j.jtho.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022]
|
4
|
Roloff GW, Drazer MW, Godley LA. Inherited Susceptibility to Hematopoietic Malignancies in the Era of Precision Oncology. JCO Precis Oncol 2022; 5:107-122. [PMID: 34994594 DOI: 10.1200/po.20.00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
As germline predisposition to hematopoietic malignancies has gained increased recognition and attention in the field of oncology, it is important for clinicians to use a systematic framework for the identification, management, and surveillance of patients with hereditary hematopoietic malignancies (HHMs). In this article, we discuss strategies for identifying individuals who warrant diagnostic evaluation and describe considerations pertaining to molecular testing. Although a paucity of prospective data is available to guide clinical monitoring of individuals harboring pathogenic variants, we provide recommendations for clinical surveillance based on consensus opinion and highlight current advances regarding the risk of progression to overt malignancy in HHM variant carriers. We also discuss the prognosis of HHMs and considerations surrounding the utility of allogeneic stem-cell transplantation in these individuals. We close with an overview of contemporary issues at the intersection of HHMs and precision oncology.
Collapse
Affiliation(s)
- Gregory W Roloff
- Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Michael W Drazer
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| |
Collapse
|
5
|
Mneimneh WS, Jiang Y, Harbhajanka A, Michael CW. Immunochemistry in the work-up of mesothelioma and its differential diagnosis and mimickers. Diagn Cytopathol 2021; 49:582-595. [PMID: 33675675 DOI: 10.1002/dc.24720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
The differential diagnosis in cellular effusions with cytological atypia often includes malignant mesothelioma (MM), reactive mesothelial proliferation, and malignancies of metastatic origin, particularly carcinomas. The International Reporting System for Serous Fluid recently established guidelines for reporting MM. In conjunction with the cytomorphologic evaluation, the role of immunochemistry (IC) was emphasized as a very useful tool in the workup of serous fluids, especially with the availability of novel markers. Utilizing a panel of markers, IC allows the characterization of the cells, whether mesothelial or not, and when mesothelial origin is established, IC can frequently assist in delineating its benign or malignant nature. IC can also confirm metastatic disease, allowing the identification of the primary origin in most cases. This review summarizes the current status of IC and its role in the diagnosis of MM and its differential diagnosis in serous fluids.
Collapse
Affiliation(s)
- Wadad S Mneimneh
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, Ohio, USA
| | - Yuying Jiang
- Department of Pathology, Firelands Regional Medical Center, Sandusky, Ohio, 44857, USA
| | - Aparna Harbhajanka
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, Ohio, USA
| | - Claire W Michael
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Váraljai R, Horn S, Sucker A, Piercianek D, Schmitt V, Carpinteiro A, Becker KA, Reifenberger J, Roesch A, Felsberg J, Reifenberger G, Sure U, Schadendorf D, Helfrich I. Integrative Genomic Analyses of Patient-Matched Intracranial and Extracranial Metastases Reveal a Novel Brain-Specific Landscape of Genetic Variants in Driver Genes of Malignant Melanoma. Cancers (Basel) 2021; 13:cancers13040731. [PMID: 33578810 PMCID: PMC7916600 DOI: 10.3390/cancers13040731] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Development of brain metastases in advanced melanoma patients is a frequent event that limits patients' quality of life and survival. Despite recent insights into melanoma genetics, systematic analyses of genetic alterations in melanoma brain metastasis formation are lacking. Moreover, whether brain metastases harbor distinct genetic alterations beyond those observed at different anatomic sites of the same patient remains unknown. EXPERIMENTAL DESIGN AND RESULTS In our study, 54 intracranial and 18 corresponding extracranial melanoma metastases were analyzed for mutations using targeted next generation sequencing of 29 recurrently mutated driver genes in melanoma. In 11 of 16 paired samples, we detected nucleotide modifications in brain metastases that were absent in matched metastases at extracranial sites. Moreover, we identified novel genetic variants in ARID1A, ARID2, SMARCA4 and BAP1, genes that have not been linked to brain metastases before; albeit most frequent mutations were found in ARID1A, ARID2 and BRAF. Conclusion: Our data provide new insights into the genetic landscape of intracranial melanoma metastases supporting a branched evolution model of metastasis formation.
Collapse
Affiliation(s)
- Renáta Váraljai
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany; (R.V.); (S.H.); (A.S.); (A.R.); (D.S.)
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45147 Essen, Germany; (D.P.); (G.R.); (U.S.)
| | - Susanne Horn
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany; (R.V.); (S.H.); (A.S.); (A.R.); (D.S.)
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45147 Essen, Germany; (D.P.); (G.R.); (U.S.)
- Faculty Rudolf-Schönheimer-Institute for Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Antje Sucker
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany; (R.V.); (S.H.); (A.S.); (A.R.); (D.S.)
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45147 Essen, Germany; (D.P.); (G.R.); (U.S.)
| | - Daniela Piercianek
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45147 Essen, Germany; (D.P.); (G.R.); (U.S.)
- Department of Neurosurgery, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany
| | - Verena Schmitt
- Institute of Anatomy, Medical Faculty, University Duisburg-Essen, 45147 Essen, Germany;
| | - Alexander Carpinteiro
- Department of Molecular Biology, Medical Faculty, University Duisburg-Essen, 45147 Essen, Germany; (A.C.); (K.A.B.)
| | - Katrin Anne Becker
- Department of Molecular Biology, Medical Faculty, University Duisburg-Essen, 45147 Essen, Germany; (A.C.); (K.A.B.)
| | - Julia Reifenberger
- Department of Dermatology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Alexander Roesch
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany; (R.V.); (S.H.); (A.S.); (A.R.); (D.S.)
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45147 Essen, Germany; (D.P.); (G.R.); (U.S.)
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Guido Reifenberger
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45147 Essen, Germany; (D.P.); (G.R.); (U.S.)
- Institute of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Ulrich Sure
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45147 Essen, Germany; (D.P.); (G.R.); (U.S.)
- Department of Neurosurgery, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany; (R.V.); (S.H.); (A.S.); (A.R.); (D.S.)
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45147 Essen, Germany; (D.P.); (G.R.); (U.S.)
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany; (R.V.); (S.H.); (A.S.); (A.R.); (D.S.)
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45147 Essen, Germany; (D.P.); (G.R.); (U.S.)
- Correspondence: ; Tel.: +49-201-723-1648; Fax: +49-201-723-5525
| |
Collapse
|
7
|
Roles and mechanisms of BAP1 deubiquitinase in tumor suppression. Cell Death Differ 2021; 28:606-625. [PMID: 33462414 DOI: 10.1038/s41418-020-00709-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The BAP1 gene has emerged as a major tumor suppressor mutated with various frequencies in numerous human malignancies, including uveal melanoma, malignant pleural mesothelioma, clear cell renal cell carcinoma, intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and thymic epithelial tumors. BAP1 mutations are also observed at low frequency in other malignancies including breast, colorectal, pancreatic, and bladder cancers. BAP1 germline mutations are associated with high incidence of mesothelioma, uveal melanoma, and other cancers, defining the "BAP1 cancer syndrome." Interestingly, germline BAP1 mutations constitute an important paradigm for gene-environment interactions, as loss of BAP1 predisposes to carcinogen-induced tumorigenesis. Inactivating mutations of BAP1 are also identified in sporadic cancers, denoting the importance of this gene for normal tissue homeostasis and tumor suppression, although some oncogenic properties have also been attributed to BAP1. BAP1 belongs to the deubiquitinase superfamily of enzymes, which are responsible for the maturation and turnover of ubiquitin as well as the reversal of substrate ubiquitination, thus regulating ubiquitin signaling. BAP1 is predominantly nuclear and interacts with several chromatin-associated factors, assembling multi-protein complexes with mutually exclusive partners. BAP1 exerts its function through highly regulated deubiquitination of its substrates. As such, BAP1 orchestrates chromatin-associated processes including gene expression, DNA replication, and DNA repair. BAP1 also exerts cytoplasmic functions, notably in regulating Ca2+ signaling at the endoplasmic reticulum. This DUB is also subjected to multiple post-translational modifications, notably phosphorylation and ubiquitination, indicating that several signaling pathways tightly regulate its function. Recent progress indicated that BAP1 plays essential roles in multiple cellular processes including cell proliferation and differentiation, cell metabolism, as well as cell survival and death. In this review, we summarize the biological and molecular functions of BAP1 and explain how the inactivation of this DUB might cause human cancers. We also highlight some of the unresolved questions and suggest potential new directions.
Collapse
|