1
|
Zhao Y, Li Z, Chen Y, Li Y, Lu J. Suppression of P2X7R by Local Treatment Alleviates Acute Gouty Inflammation. J Inflamm Res 2023; 16:3581-3591. [PMID: 37636273 PMCID: PMC10460186 DOI: 10.2147/jir.s421548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Gout is the most common inflammatory arthritis associated with interleukin-1β (IL-1β) accumulation during exacerbation. In this study, we aimed to clarify whether potassium channel antagonists attenuate local inflammation in mice with monosodium urate (MSU)-induced gout. Methods We cultured human macrophage THP-1 cells and evaluated the molecular levels of both IL-1β and potassium channels stimulated with MSU and/or potassium channel antagonists. Acute gout models were generated in IL-1β luciferase transgenic male mice using synovium-like subcutaneous air pouches with MSU injection. Their luciferase activities were monitored following potassium channel blocker treatment using the IVIS Spectrum CT imaging system. The lavages and tissues were extracted from their air pouches, followed by cell counting and pathological analysis. Results MSU stimulation increased the gene expression levels of pro-IL-1β, P2x7r and Kv1.3, whereas the expression of Kcnq1 was decreased in phorbol 12-myristate 13-acetate-induced THP-1 cells. Both high and low concentrations of the P2x7 receptor inhibitor adenosine 5'-triphosphate (ATP) derivative periodate oxidized ATP (oATP) decreased the production of IL-1β in the supernatant of THP-1 cells. The sixth hour was the peak time of IL-1β luciferase activity after MSU intervention in vivo. oATP ameliorated the synovial IL-1β luciferase activity, reduced inflammatory cell infiltration and alleviated the erosive damage in the cartilage. Conclusion The anti-inflammatory properties of potassium channel inhibitors, especially of oATP, might point to new strategies for local anti-inflammatory therapy for acute gout.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Orthodontics, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zhiyuan Li
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Ying Chen
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yushuang Li
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jie Lu
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
2
|
Jiang L, Wang D, He Y, Shu Y. Advances in gene therapy hold promise for treating hereditary hearing loss. Mol Ther 2023; 31:934-950. [PMID: 36755494 PMCID: PMC10124073 DOI: 10.1016/j.ymthe.2023.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gene therapy focuses on genetic modification to produce therapeutic effects or treat diseases by repairing or reconstructing genetic material, thus being expected to be the most promising therapeutic strategy for genetic disorders. Due to the growing attention to hearing impairment, an increasing amount of research is attempting to utilize gene therapy for hereditary hearing loss (HHL), an important monogenic disease and the most common type of congenital deafness. Several gene therapy clinical trials for HHL have recently been approved, and, additionally, CRISPR-Cas tools have been attempted for HHL treatment. Therefore, in order to further advance the development of inner ear gene therapy and promote its broad application in other forms of genetic disease, it is imperative to review the progress of gene therapy for HHL. Herein, we address three main gene therapy strategies (gene replacement, gene suppression, and gene editing), summarizing the strategy that is most appropriate for particular monogenic diseases based on different pathogenic mechanisms, and then focusing on their successful applications for HHL in preclinical trials. Finally, we elaborate on the challenges and outlooks of gene therapy for HHL.
Collapse
Affiliation(s)
- Luoying Jiang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Song Y, Guo T, Jiang Y, Zhu M, Wang H, Lu W, Jiang M, Qi M, Lan F, Cui M. KCNQ1-deficient and KCNQ1-mutant human embryonic stem cell-derived cardiomyocytes for modeling QT prolongation. Stem Cell Res Ther 2022; 13:287. [PMID: 35765105 PMCID: PMC9241307 DOI: 10.1186/s13287-022-02964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background The slowly activated delayed rectifier potassium current (IKs) mediated by the KCNQ1 gene is one of the main currents involved in repolarization. KCNQ1 mutation can result in long-QT syndrome type 1 (LQT1). IKs does not participate in repolarization in mice; thus, no good model is currently available for research on the mechanism of and drug screening for LQT1. In this study, we established a KCNQ1-deficient human cardiomyocyte (CM) model and performed a series of microelectrode array (MEA) detection experiments on KCNQ1-mutant CMs constructed in other studies to explore the pathogenic mechanism of KCNQ1 deletion and mutation and perform drug screening. Method KCNQ1 was knocked out in human embryonic stem cell (hESC) H9 line using the CRISPR/cas9 system. KCNQ1-deficient and KCNQ1-mutant hESCs were differentiated into CMs through a chemically defined differentiation protocol. Subsequently, high-throughput MEA analysis and drug intervention were performed to determine the electrophysiological characteristics of KCNQ1-deficient and KCNQ1-mutant CMs. Results During high-throughput MEA analysis, the electric field potential and action potential durations in KCNQ1-deficient CMs were significantly longer than those in wild-type CMs. KCNQ1-deficient CMs also showed an irregular rhythm. Furthermore, KCNQ1-deficient and KCNQ1-mutant CMs showed different responses to different drug treatments, which reflected the differences in their pathogenic mechanisms. Conclusion We established a human CM model with KCNQ1 deficiency showing a prolonged QT interval and an irregular heart rhythm. Further, we used various drugs to treat KCNQ1-deficient and KCNQ1-mutant CMs, and the three models showed different responses to these drugs. These models can be used as important tools for studying the different pathogenic mechanisms of KCNQ1 mutation and the relationship between the genotype and phenotype of KCNQ1, thereby facilitating drug development. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02964-3.
Collapse
Affiliation(s)
- Yuanxiu Song
- Department of Cardiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Tianwei Guo
- Beijing Lab for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Youxu Jiang
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Jingba Road, Zhengzhou, 450053, China
| | - Min Zhu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hongyue Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wenjing Lu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China
| | - Mengqi Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Man Qi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Feng Lan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China.
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
4
|
Torrado M, Maneiro E, Lamounier Junior A, Fernández-Burriel M, Sánchez Giralt S, Martínez-Carapeto A, Cazón L, Santiago E, Ochoa JP, McKenna WJ, Santomé L, Monserrat L. Identification of an elusive spliceogenic MYBPC3 variant in an otherwise genotype-negative hypertrophic cardiomyopathy pedigree. Sci Rep 2022; 12:7284. [PMID: 35508642 PMCID: PMC9068804 DOI: 10.1038/s41598-022-11159-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
The finding of a genotype-negative hypertrophic cardiomyopathy (HCM) pedigree with several affected members indicating a familial origin of the disease has driven this study to discover causative gene variants. Genetic testing of the proband and subsequent family screening revealed the presence of a rare variant in the MYBPC3 gene, c.3331−26T>G in intron 30, with evidence supporting cosegregation with the disease in the family. An analysis of potential splice-altering activity using several splicing algorithms consistently yielded low scores. Minigene expression analysis at the mRNA and protein levels revealed that c.3331−26T>G is a spliceogenic variant with major splice-altering activity leading to undetectable levels of properly spliced transcripts or the corresponding protein. Minigene and patient mRNA analyses indicated that this variant induces complete and partial retention of intron 30, which was expected to lead to haploinsufficiency in carrier patients. As most spliceogenic MYBPC3 variants, c.3331−26T>G appears to be non-recurrent, since it was identified in only two additional unrelated probands in our large HCM cohort. In fact, the frequency analysis of 46 known splice-altering MYBPC3 intronic nucleotide substitutions in our HCM cohort revealed 9 recurrent and 16 non-recurrent variants present in a few probands (≤ 4), while 21 were not detected. The identification of non-recurrent elusive MYBPC3 spliceogenic variants that escape detection by in silico algorithms represents a challenge for genetic diagnosis of HCM and contributes to solving a fraction of genotype-negative HCM cases.
Collapse
Affiliation(s)
- Mario Torrado
- Cardiovascular Research Group, University of A Coruña, Campus de Oza, Building Fortín, 15006, A Coruña, Spain. .,Biomedical Research Institute of A Coruña, A Coruña, Spain.
| | - Emilia Maneiro
- Biomedical Research Institute of A Coruña, A Coruña, Spain. .,Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain.
| | - Arsonval Lamounier Junior
- Cardiovascular Research Group, University of A Coruña, Campus de Oza, Building Fortín, 15006, A Coruña, Spain.,Biomedical Research Institute of A Coruña, A Coruña, Spain.,Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain.,Medical School, Universidade Vale do Rio Doce, Governador Valadares, MG, Brazil
| | | | | | | | - Laura Cazón
- Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain
| | - Elisa Santiago
- Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain
| | - Juan Pablo Ochoa
- Biomedical Research Institute of A Coruña, A Coruña, Spain.,Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain
| | - William J McKenna
- Cardiovascular Research Group, University of A Coruña, Campus de Oza, Building Fortín, 15006, A Coruña, Spain.,Biomedical Research Institute of A Coruña, A Coruña, Spain.,Institute of Cardiovascular Science, University College London, London, UK
| | - Luis Santomé
- Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain
| | - Lorenzo Monserrat
- Biomedical Research Institute of A Coruña, A Coruña, Spain.,Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain
| |
Collapse
|
5
|
Lin JH, Wu H, Zou WB, Masson E, Fichou Y, Le Gac G, Cooper DN, Férec C, Liao Z, Chen JM. Splicing Outcomes of 5' Splice Site GT>GC Variants That Generate Wild-Type Transcripts Differ Significantly Between Full-Length and Minigene Splicing Assays. Front Genet 2021; 12:701652. [PMID: 34422003 PMCID: PMC8375439 DOI: 10.3389/fgene.2021.701652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Combining data derived from a meta-analysis of human disease-associated 5' splice site GT>GC (i.e., +2T>C) variants and a cell culture-based full-length gene splicing assay (FLGSA) of forward engineered +2T>C substitutions, we recently estimated that ∼15-18% of +2T>C variants can generate up to 84% wild-type transcripts relative to their wild-type counterparts. Herein, we analyzed the splicing outcomes of 20 +2T>C variants that generate some wild-type transcripts in two minigene assays. We found a high discordance rate in terms of the generation of wild-type transcripts, not only between FLGSA and the minigene assays but also between the different minigene assays. In the pET01 context, all 20 wild-type minigene constructs generated the expected wild-type transcripts; of the 20 corresponding variant minigene constructs, 14 (70%) generated wild-type transcripts. In the pSPL3 context, only 18 of the 20 wild-type minigene constructs generated the expected wild-type transcripts whereas 8 of the 18 (44%) corresponding variant minigene constructs generated wild-type transcripts. Thus, in the context of a particular type of variant, we raise awareness of the limitations of minigene splicing assays and emphasize the importance of sequence context in regulating splicing. Whether or not our findings apply to other types of splice-altering variant remains to be investigated.
Collapse
Affiliation(s)
- Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Hao Wu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Yann Fichou
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Gerald Le Gac
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| |
Collapse
|