1
|
Żyłka M, Górski G, Żyłka W, Gala-Błądzińska A. Numerical analysis of blood flow in the abdominal aorta under simulated weightlessness and earth conditions. Sci Rep 2024; 14:15978. [PMID: 38987416 PMCID: PMC11237043 DOI: 10.1038/s41598-024-66961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Blood flow through the abdominal aorta and iliac arteries is a crucial area of research in hemodynamics and cardiovascular diseases. To get in to the problem, this study presents detailed analyses of blood flow through the abdominal aorta, together with left and right iliac arteries, under Earth gravity and weightless conditions, both at the rest stage, and during physical activity. The analysis were conducted using ANSYS Fluent software. The results indicate, that there is significantly less variation in blood flow velocity under weightless conditions, compared to measurement taken under Earth Gravity conditions. Study presents, that the maximum and minimum blood flow velocities decrease and increase, respectively, under weightless conditions. Our model for the left iliac artery revealed higher blood flow velocities during the peak of the systolic phase (systole) and lower velocities during the early diastolic phase (diastole). Furthermore, we analyzed the shear stress of the vessel wall and the mean shear stress over time. Additionally, the distribution of oscillatory shear rate, commonly used in hemodynamic analyses, was examined to assess the effects of blood flow on the blood vessels. Countermeasures to mitigate the negative effects of weightlessness on astronauts health are discussed, including exercises performed on the equipment aboard the space station. These exercises aim to maintain optimal blood flow, prevent the formation of atherosclerotic plaques, and reduce the risk of cardiovascular complications.
Collapse
Affiliation(s)
- Marta Żyłka
- The Faculty of Mechanical Engineering and Aeronautics, Department of Aerospace Engineering, Rzeszow University of Technology, av. Powstańców Warszawy 8, 35-959, Rzeszów, Poland.
| | - Grzegorz Górski
- Institute of Physics, College of Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-310, Rzeszów, Poland
| | - Wojciech Żyłka
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-310, Rzeszów, Poland
| | - Agnieszka Gala-Błądzińska
- Institute of Medical Sciences, Medical College of Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland
- Internal Medicine, Nephrology and Endocrinology Clinic, St. Queen Jadwiga Clinical District Hospital No. 2 in Rzeszow, ul. Lwowska 60, 35-301, Rzeszów, Poland
| |
Collapse
|
2
|
Ibrahim Z, Khan NA, Qaisar R, Saleh MA, Siddiqui R, Al-Hroub HM, Giddey AD, Semreen MH, Soares NC, Elmoselhi AB. Serum multi-omics analysis in hindlimb unloading mice model: Insights into systemic molecular changes and potential diagnostic and therapeutic biomarkers. Heliyon 2024; 10:e23592. [PMID: 38187258 PMCID: PMC10770503 DOI: 10.1016/j.heliyon.2023.e23592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Microgravity, in space travel and prolonged bed rest conditions, induces cardiovascular deconditioning along with skeletal muscle mass loss and weakness. The findings of microgravity research may also aid in the understanding and treatment of human health conditions on Earth such as muscle atrophy, and cardiovascular diseases. Due to the paucity of biomarkers and the unknown underlying mechanisms of cardiovascular and skeletal muscle deconditioning in these environments, there are insufficient diagnostic and preventative measures. In this study, we employed hindlimb unloading (HU) mouse model, which mimics astronauts in space and bedridden patients, to first evaluate cardiovascular and skeletal muscle function, followed by proteomics and metabolomics LC-MS/MS-based analysis using serum samples. Three weeks of unloading caused changes in the function of the cardiovascular system in c57/Bl6 mice, as seen by a decrease in mean arterial pressure and heart weight. Unloading for three weeks also changed skeletal muscle function, causing a loss in grip strength in HU mice and atrophy of skeletal muscle indicated by a reduction in muscle mass. These modifications were partially reversed by a two-week recovery period of reloading condition, emphasizing the significance of the recovery process. Proteomics analysis revealed 12 dysregulated proteins among the groups, such as phospholipid transfer protein, Carbonic anhydrase 3, Parvalbumin alpha, Major urinary protein 20 (Mup20), Thrombospondin-1, and Apolipoprotein C-IV. On the other hand, metabolomics analysis showed altered metabolites among the groups such as inosine, hypoxanthine, xanthosine, sphinganine, l-valine, 3,4-Dihydroxyphenylglycol, and l-Glutamic acid. The joint data analysis revealed that HU conditions mainly impacted pathways such as ABC transporters, complement and coagulation cascades, nitrogen metabolism, and purine metabolism. Overall, our results indicate that microgravity environment induces significant alterations in the function, proteins, and metabolites of these mice. These observations suggest the potential utilization of these proteins and metabolites as novel biomarkers for assessing and mitigating cardiovascular and skeletal muscle deconditioning associated with such conditions.
Collapse
Affiliation(s)
- Zeinab Ibrahim
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed A. Khan
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Rizwan Qaisar
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A. Saleh
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, EH14 4AS UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Hamza M. Al-Hroub
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Alexander D. Giddey
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammad Harb Semreen
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av. Padre Cruz, Lisbon, 1649-016, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA School/ Faculdade de Lisboa, Lisbon, Portugal
| | - Adel B. Elmoselhi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Nishimura Y. Technology using simulated microgravity. Regen Ther 2023; 24:318-323. [PMID: 37662695 PMCID: PMC10470365 DOI: 10.1016/j.reth.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023] Open
Abstract
The human body experiences constant stimulation from Earth's gravity, and the absence of gravity leads to various impacts at the cellular and tissue levels. Simulated microgravity (s-μg) has been employed on Earth to investigate these effects, circumventing the challenges of conducting experiments in space and providing an opportunity to understand the influence of microgravity on living organisms. Research focusing on stem cells and utilizing s-μg has enhanced our understanding of how microgravity affects stem cell morphology, migration, proliferation, and differentiation. Studies have used systems such as rotating wall vessels, random positioning machines, and clinostats. By uncovering the mechanisms underlying the observed changes in these studies, there is potential to identify therapeutic targets that regulate stem cell function and explore a range of applications, including stem cell-based regenerative medicine. This review will focus on the features of each device designed to simulate microgravity on Earth, as well as the stem cell experiments performed with those devices.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Department of Clinical Engineering, Faculty of Medical Science and Technology, Gunma Paz University, 3-3-4 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| |
Collapse
|
4
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Role of Preoperative Ultrasound Shear-Wave Elastography and Radiofrequency-Based Arterial Wall Tracking in Assessing the Vulnerability of Carotid Plaques: Preliminary Results. Diagnostics (Basel) 2023; 13:diagnostics13040805. [PMID: 36832293 PMCID: PMC9955800 DOI: 10.3390/diagnostics13040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
We aimed at evaluating the ability of point shear-wave elastography (pSWE) and of a radiofrequency (RF) echo-tracking-based method in preoperatively assessing the vulnerability of the carotid plaque in patients undergoing carotid endarterectomy (CEA) for significant asymptomatic stenosis. All patients who underwent CEA from 03/2021 to 03/2022 performed a preoperative pSWE and an RF echo-based wall evaluation of arterial stiffness using an Esaote MyLab ultrasound system (EsaoteTM, Genova, Italy) with dedicated software. The data derived from these evaluations (Young's modulus (YM), augmentation index (AIx), pulse-wave velocity (PWV)) were correlated with the outcome of the analysis of the plaque removed during the surgery. Data were analyzed on 63 patients (33 vulnerable and 30 stable plaques). In stable plaques, YM was significantly higher than in vulnerable plaques (49.6 + 8.1 kPa vs. 24.6 + 4.3 kPa, p = 0.009). AIx also tended to be slightly higher in stable plaques, even if it was not statistically significant (10.4 + 0.9% vs. 7.7 + 0.9%, p = 0.16). The PWV was similar (12.2 + 0.9 m/s for stable plaques vs. 10.6 + 0.5 m/s for vulnerable plaques, p = 0.16). For YM, values >34 kPa had a sensitivity of 50% and a specificity of 73.3% in predicting plaque nonvulnerability (area under the curve = 0.66). Preoperative measurement of YM by means of pSWE could be a noninvasive and easily applicable tool for assessing the preoperative risk of plaque vulnerability in asymptomatic patients who are candidates for CEA.
Collapse
|