1
|
Wu Y, Wang J, Deng Y, Angelov B, Fujino T, Hossain MS, Angelova A. Lipid and Transcriptional Regulation in a Parkinson's Disease Mouse Model by Intranasal Vesicular and Hexosomal Plasmalogen-Based Nanomedicines. Adv Healthc Mater 2024; 13:e2304588. [PMID: 38386974 PMCID: PMC11468381 DOI: 10.1002/adhm.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| | - Jieli Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Yuru Deng
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Borislav Angelov
- Department of Structural DynamicsExtreme Light Infrastructure ERICDolni BrezanyCZ‐25241Czech Republic
| | - Takehiko Fujino
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Md. Shamim Hossain
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Angelina Angelova
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| |
Collapse
|
2
|
Murray GC, Hines TJ, Tadenev ALD, Xu I, Züchner S, Burgess RW. Testing SIPA1L2 as a modifier of CMT1A using mouse models. J Neuropathol Exp Neurol 2024; 83:318-330. [PMID: 38472136 PMCID: PMC11029467 DOI: 10.1093/jnen/nlae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), leading to muscle weakness and loss of sensation in the hands and feet. A recent case-only genome-wide association study of CMT1A patients conducted by the Inherited Neuropathy Consortium identified a strong association between strength of foot dorsiflexion and variants in signal induced proliferation associated 1 like 2 (SIPA1L2), indicating that it may be a genetic modifier of disease. To validate SIPA1L2 as a candidate modifier and to assess its potential as a therapeutic target, we engineered mice with deletion of exon 1 (including the start codon) of the Sipa1l2 gene and crossed them to the C3-PMP22 mouse model of CMT1A. Neuromuscular phenotyping showed that Sipa1l2 deletion in C3-PMP22 mice preserved muscular endurance assayed by inverted wire hang duration and changed femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggest involvement of Sipa1l2 in cholesterol biosynthesis, a pathway that is also implicated in C3-PMP22 mice. Although Sipa1l2 deletion did impact CMT1A-associated phenotypes, thereby validating a genetic interaction, the overall effect on neuropathy was mild.
Collapse
Affiliation(s)
- George C Murray
- The Jackson Laboratory, Bar Harbor, Maine, USA
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, USA
| | | | | | - Isaac Xu
- Department of Human Genetics and John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephan Züchner
- Department of Human Genetics and John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, Maine, USA
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, USA
| |
Collapse
|
3
|
Jeong SH, Chung SJ, Yoo HS, Jung JH, Baik JS, Sohn YH, Lee PH. Differential effects of cholesterol levels on cognition according to body mass index in Parkinson's disease. Alzheimers Res Ther 2024; 16:24. [PMID: 38297344 PMCID: PMC10829366 DOI: 10.1186/s13195-023-01326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Cholesterol is an essential component of the neuronal cell membrane and is crucial for neuronal function; however, the role of cholesterol levels in Parkinson's disease (PD) is debatable. This study investigated the complex relationship between total cholesterol (TC) levels, body mass index (BMI), and cognition in patients with PD. METHODS This study included 321 drug-naïve patients with PD who underwent dopamine transporter (DAT) imaging and baseline neuropsychological tests. Multivariate linear regression and Cox regression models were used to investigate the effect of TC levels on the composite score of each cognitive domain and dementia conversion after adjusting for covariates, respectively. Interaction analyses were performed to examine the interaction effect between TC levels and BMI on baseline cognition and dementia conversion. RESULTS TC levels and cognition showed no significant relationship after adjusting for potential confounders. A significant interaction effect between TC levels and BMI was observed in frontal/executive function and dementia conversion. Further analyses showed that TC levels were positively associated with frontal/executive function in the under-/normal weight group (β = 0.205, p = 0.013), whereas a negative relationship existed between TC levels and frontal/executive function in the obese group (β = - 0.213, p = 0.017). Cox regression analyses also showed the differential effects of TC levels on dementia conversion according to BMI (under-/normal weight group: hazard ratio [HR] = 0.550, p = 0.013; obese group: HR = 2.085, p = 0.014). CONCLUSIONS This study suggests a cross-over interaction between TC levels and BMI on cognitive symptoms in PD.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Han Soo Yoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Inje Universitiy Busan Paik Hospital, Seoul, South Korea
| | - Jong Sam Baik
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Murray GC, Hines TJ, Tadenev ALD, Xu I, Züchner S, Burgess RW. Testing SIPA1L2 as a modifier of CMT1A using mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569428. [PMID: 38076977 PMCID: PMC10705403 DOI: 10.1101/2023.11.30.569428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Charcot-Marie-Tooth 1A is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), which produces muscle weakness and loss of sensation in the hands and feet. A recent case-only genome wide association study by the Inherited Neuropathy Consortium identified a strong association between variants in signal induced proliferation associated 1 like 2 (SIPA1L2) and strength of foot dorsiflexion. To validate SIPA1L2 as a candidate modifier, and to assess its potential as a therapeutic target, we engineered mice with a deletion in SIPA1L2 and crossed them to the C3-PMP22 mouse model of CMT1A. We performed neuromuscular phenotyping and identified an interaction between Sipa1l2 deletion and muscular endurance decrements assayed by wire-hang duration in C3-PMP22 mice, as well as several interactions in femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggested an involvement of Sipa1l2 in cholesterol biosynthesis, which was also implicated in C3-PMP22 mice. Though several interactions between Sipa1l2 deletion and CMT1A-associated phenotypes were identified, validating a genetic interaction, the overall effect on neuropathy was small.
Collapse
Affiliation(s)
- George C Murray
- The Jackson Laboratory, Bar Harbor, ME 04609
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469
| | | | | | - Isaac Xu
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Züchner
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469
| |
Collapse
|
5
|
Zagare A, Preciat G, Nickels SL, Luo X, Monzel AS, Gomez-Giro G, Robertson G, Jaeger C, Sharif J, Koseki H, Diederich NJ, Glaab E, Fleming RMT, Schwamborn JC. Omics data integration suggests a potential idiopathic Parkinson's disease signature. Commun Biol 2023; 6:1179. [PMID: 37985891 PMCID: PMC10662437 DOI: 10.1038/s42003-023-05548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
The vast majority of Parkinson's disease cases are idiopathic. Unclear etiology and multifactorial nature complicate the comprehension of disease pathogenesis. Identification of early transcriptomic and metabolic alterations consistent across different idiopathic Parkinson's disease (IPD) patients might reveal the potential basis of increased dopaminergic neuron vulnerability and primary disease mechanisms. In this study, we combine systems biology and data integration approaches to identify differences in transcriptomic and metabolic signatures between IPD patient and healthy individual-derived midbrain neural precursor cells. Characterization of gene expression and metabolic modeling reveal pyruvate, several amino acid and lipid metabolism as the most dysregulated metabolic pathways in IPD neural precursors. Furthermore, we show that IPD neural precursors endure mitochondrial metabolism impairment and a reduced total NAD pool. Accordingly, we show that treatment with NAD precursors increases ATP yield hence demonstrating a potential to rescue early IPD-associated metabolic changes.
Collapse
Affiliation(s)
- Alise Zagare
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - German Preciat
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Sarah L Nickels
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Xi Luo
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Gemma Gomez-Giro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Graham Robertson
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Christian Jaeger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, 230-0045, Japan
| | - Nico J Diederich
- Centre Hospitalier de Luxembourg (CHL), 4, Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Ronan M T Fleming
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
6
|
Qiu J, Wei L, Su Y, Tang Y, Peng G, Wu Y, He Y, Liu H, Guo W, Wu Z, Xu P, Mo M. Lipid Metabolism Disorder in Cerebrospinal Fluid Related to Parkinson's Disease. Brain Sci 2023; 13:1166. [PMID: 37626522 PMCID: PMC10452343 DOI: 10.3390/brainsci13081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Abnormal accumulation of lipids is found in dopamine neurons and resident microglia in the substantia nigra of patients with Parkinson's disease (PD). The accumulation of lipids is an important risk factor for PD. Previous studies have mainly focussed on lipid metabolism in peripheral blood, but little attention has been given to cerebrospinal fluid (CSF). We drew the lipidomic signature in CSF from PD patients and evaluated the role of lipids in CSF as biomarkers for PD diagnosis. METHODS Based on lipidomic approaches, we investigated and compared lipid metabolism in CSF from PD patients and healthy controls without dyslipidaemia in peripheral blood and explored the relationship of lipids between CSF and serum by Pearson correlation analysis. RESULTS A total of 231 lipid species were detected and classified into 13 families in the CSF. The lipid families, including phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol ester (CE), had significantly increased expression compared with the control. Hierarchical clustering was performed to distinguish PD patients based on the significantly changed expression of 34 lipid species. Unsupervised and supervised methods were used to refine this classification. A total of 12 lipid species, including 3-hydroxy-dodecanoyl-carnitine, Cer(d18:1/24:1), CE(20:4), CE(22:6), PC(14:0/18:2), PC(O-18:3/20:2), PC(O-20:2/24:3), SM(d18:0/16:0), SM(d18:2/14:0), SM(d18:2/24:1), SM(d18:1/20:1) and SM(d18:1/12:0), were selected to draw the lipidomic signature of PD. Correlation analysis was performed and showed that the CE family and CE (22:6) in CSF had a positive association with total cholesterol in the peripheral blood from PD patients but not from healthy controls. CONCLUSIONS Our results revealed that the lipidomic signature in CSF may be considered a potential biomarker for PD diagnosis, and increased CE, PC and SM in CSF may reveal pathological changes in PD patients, such as blood-brain barrier leakage.
Collapse
Affiliation(s)
- Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Yilin Su
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Yimin Wu
- Department of General Medicine, Fengxian Community Health Service Center, Shanghai 210499, China;
| | - Yan He
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Zhuohu Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| |
Collapse
|
7
|
Menozzi E, Toffoli M, Schapira AHV. Targeting the GBA1 pathway to slow Parkinson disease: Insights into clinical aspects, pathogenic mechanisms and new therapeutic avenues. Pharmacol Ther 2023; 246:108419. [PMID: 37080432 DOI: 10.1016/j.pharmthera.2023.108419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
The GBA1 gene encodes the lysosomal enzyme glucocerebrosidase (GCase), which is involved in sphingolipid metabolism. Biallelic variants in GBA1 cause Gaucher disease (GD), a lysosomal storage disorder characterised by loss of GCase activity and aberrant intracellular accumulation of GCase substrates. Carriers of GBA1 variants have an increased risk of developing Parkinson disease (PD), with odds ratio ranging from 2.2 to 30 according to variant severity. GBA1 variants which do not cause GD in homozygosis can also increase PD risk. Patients with PD carrying GBA1 variants show a more rapidly progressive phenotype compared to non-carriers, emphasising the need for disease modifying treatments targeting the GBA1 pathway. Several mechanisms secondary to GCase dysfunction are potentially responsible for the pathological changes leading to PD. Misfolded GCase proteins induce endoplasmic reticulum stress and subsequent unfolded protein response and impair the autophagy-lysosomal pathway. This results in α-synuclein accumulation and spread, and promotes neurodegenerative changes. Preclinical evidence also shows that products of GCase activity can promote accumulation of α-synuclein, however there is no convincing evidence of substrate accumulation in GBA1-PD brains. Altered lipid homeostasis secondary to loss of GCase activity could also contribute to PD pathology. Treatments that target the GBA1 pathway could reverse these pathological processes and halt/slow the progression of PD. These range from augmentation of GCase activity via GBA1 gene therapy, restoration of normal intracellular GCase trafficking via molecular chaperones, and substrate reduction therapy. This review discusses the pathways associated with GBA1-PD and related novel GBA1-targeted interventions for PD treatment.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
8
|
Galper J, Kim WS, Dzamko N. LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules 2022; 12:1597. [PMID: 36358947 PMCID: PMC9687231 DOI: 10.3390/biom12111597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/10/2024] Open
Abstract
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.
Collapse
Affiliation(s)
- Jasmin Galper
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Nicolas Dzamko
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
9
|
Lipid level alteration in human and cellular models of alpha synuclein mutations. NPJ Parkinsons Dis 2022; 8:52. [PMID: 35468903 PMCID: PMC9039073 DOI: 10.1038/s41531-022-00313-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Lipid profiles in biological fluids from patients with Parkinson's disease (PD) are increasingly investigated in search of biomarkers. However, the lipid profiles in genetic PD remain to be determined, a gap of knowledge of particular interest in PD associated with mutant α-synuclein (SNCA), given the known relationship between this protein and lipids. The objective of this research is to identify serum lipid composition from SNCA A53T mutation carriers and to compare these alterations to those found in cells and transgenic mice carrying the same genetic mutation. We conducted an unbiased lipidomic analysis of 530 lipid species from 34 lipid classes in serum of 30 participants with SNCA mutation with and without PD and 30 healthy controls. The primary analysis was done between 22 PD patients with SNCA+ (SNCA+/PD+) and 30 controls using machine-learning algorithms and traditional statistics. We also analyzed the lipid composition of human clonal-cell lines and tissue from transgenic mice overexpressing the same SNCA mutation. We identified specific lipid classes that best discriminate between SNCA+/PD+ patients and healthy controls and found certain lipid species, mainly from the glycerophosphatidylcholine and triradylglycerol classes, that are most contributory to this discrimination. Most of these alterations were also present in human derived cells and transgenic mice carrying the same mutation. Our combination of lipidomic and machine learning analyses revealed alterations in glycerophosphatidylcholine and triradylglycerol in sera from PD patients as well as cells and tissues expressing mutant α-Syn. Further investigations are needed to establish the pathogenic significance of these α-Syn-associated lipid changes.
Collapse
|
10
|
Bioengineered models of Parkinson's disease using patient-derived dopaminergic neurons exhibit distinct biological profiles in a 3D microenvironment. Cell Mol Life Sci 2022; 79:78. [PMID: 35044538 PMCID: PMC8908880 DOI: 10.1007/s00018-021-04047-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023]
Abstract
Three-dimensional (3D) in vitro culture systems using human induced pluripotent stem cells (hiPSCs) are useful tools to model neurodegenerative disease biology in physiologically relevant microenvironments. Though many successful biomaterials-based 3D model systems have been established for other neurogenerative diseases, such as Alzheimer's disease, relatively few exist for Parkinson's disease (PD) research. We employed tissue engineering approaches to construct a 3D silk scaffold-based platform for the culture of hiPSC-dopaminergic (DA) neurons derived from healthy individuals and PD patients harboring LRRK2 G2019S or GBA N370S mutations. We then compared results from protein, gene expression, and metabolic analyses obtained from two-dimensional (2D) and 3D culture systems. The 3D platform enabled the formation of dense dopamine neuronal network architectures and developed biological profiles both similar and distinct from 2D culture systems in healthy and PD disease lines. PD cultures developed in 3D platforms showed elevated levels of α-synuclein and alterations in purine metabolite profiles. Furthermore, computational network analysis of transcriptomic networks nominated several novel molecular interactions occurring in neurons from patients with mutations in LRRK2 and GBA. We conclude that the brain-like 3D system presented here is a realistic platform to interrogate molecular mechanisms underlying PD biology.
Collapse
|
11
|
Hong X, Guo W, Li S. Lower Blood Lipid Level Is Associated with the Occurrence of Parkinson's Disease: A Meta-Analysis and Systematic Review. Int J Clin Pract 2022; 2022:9773038. [PMID: 35801143 PMCID: PMC9203242 DOI: 10.1155/2022/9773038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The changes of blood lipid levels in patients with Parkinson's disease (PD) and its clinical relevance remain unclear. We aimed to evaluate the potential association of blood lipid and the occurrence of PD, to provide evidence to the clinical treatment and nursing care of PD. METHODS We searched PubMed, Medline, Web of Science, Cochrane Library, Wanfang Database, Weipu Database, and China National Knowledge Infrastructure for studies related to the blood lipid levels and PD until November 30, 2021. Two researchers independently screened the literature and extricated the data including the levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of included studies. RevMan5.3 and Stata 12.0 software were used for statistical processing and analysis. RESULTS A total of 15 cohort studies with 9740 participants involving 2032 PD patients and 7708 controls were included. Meta-analysis indicated that TC (SMD = -0.29, 95% CI -0.55∼-0.03, P=0.04), TG (SMD = -16.83, 95% CI -20.71∼-12.95, P < 0.001), HDL-C (SMD = -0.14, 95% CI -0.26∼-0.02, P < 0.001) and LDL-C (SMD = -0.26, 95% CI -0.50∼-0.01, P=0.04) level in the PD patients was significantly lower than that of health controls. Sensitivity analysis indicated that the results were stable. No significant publication bias was found between the synthesized outcomes. CONCLUSIONS Lower blood TC, TG, HDL-C, and LDL-C level are associated with the occurrence of PD. Limited by sample size and study population, further high-quality, large-sample clinical trials in different areas are needed to further determine the relationship between blood lipids and PD in the future.
Collapse
Affiliation(s)
- Xue Hong
- General Medical Department, Changshou Community Healthcare Center of Putuo District, Shanghai 200060, China
| | - Wenting Guo
- General Medical Department, West Nanjing Road Community Healthcare Center of Jingan District, Shanghai 200041, China
| | - Shanshan Li
- Emergency Department, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
12
|
Macías-García D, Periñán MT, Muñoz-Delgado L, Jesús S, Jimenez-Jaraba MV, Buiza-Rueda D, Bonilla-Toribio M, Adarmes-Gómez A, Carrillo F, Gómez-Garre P, Mir P. Increased Stroke Risk in Patients with Parkinson's Disease with LRRK2 Mutations. Mov Disord 2021; 37:225-227. [PMID: 34859503 DOI: 10.1002/mds.28863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Daniel Macías-García
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - María Teresa Periñán
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - María Valle Jimenez-Jaraba
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | - Dolores Buiza-Rueda
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Marta Bonilla-Toribio
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Astrid Adarmes-Gómez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|