1
|
Alanazi FI, Bravo CAR, Moreno JSS, Botero-Posada LF, Ladino LD, Rios ALL, Hutchison WD. Modulation of neuronal activity in human centromedian nucleus during an auditory attention and working memory task. Neuroimage 2024; 296:120686. [PMID: 38871037 DOI: 10.1016/j.neuroimage.2024.120686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Centromedian nucleus (CM) is one of several intralaminar nuclei of the thalamus and is thought to be involved in consciousness, arousal, and attention. CM has been suggested to play a key role in the control of attention, by regulating the flow of information to different brain regions such as the ascending reticular system, basal ganglia, and cortex. While the neurophysiology of attention in visual and auditory systems has been studied in animal models, combined single unit and LFP recordings in human have not, to our knowledge, been reported. Here, we recorded neuronal activity in the CM nucleus in 11 patients prior to insertion of deep brain stimulation electrodes for the treatment of epilepsy while subjects performed an auditory attention task. Patients were requested to attend and count the infrequent (p = 0.2) odd or "deviant" tones, ignore the frequent standard tones and report the total number of deviant tones at trial completion. Spikes were discriminated, and LFPs were band pass filtered (5-45 Hz). Average peri‑stimulus time histograms and spectra were constructed by aligning on tone onsets and statistically compared. The firing rate of CM neurons showed selective, multi-phasic responses to deviant tones in 81% of the tested neurons. Local field potential analysis showed selective beta and low gamma (13-45 Hz) modulations in response to deviant tones, also in a multi-phasic pattern. The current study demonstrates that CM neurons are under top-down control and participate in the selective processing during auditory attention and working memory. These results, taken together, implicate the CM in selective auditory attention and working memory and support a role of beta and low gamma oscillatory activity in cognitive processes. It also has potential implications for DBS therapy for epilepsy and non-motor symptoms of PD, such as apathy and other disorders of attention.
Collapse
Affiliation(s)
- Frhan I Alanazi
- Department of Physiology, University of Toronto, Canada; Krembil Brain Institute, Leonard St, Toronto Ontario, Canada; Department of Basic Sciences, Prince Sultan bin Abdulaziz College for Emergency Medical Services, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | - Juan Sebastián Saavedra Moreno
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia; Department of Neurology, University of Antioquia, Medellín, Colombia
| | - Luis Fernando Botero-Posada
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia
| | - Lady Diana Ladino
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia; Department of Neurology, University of Antioquia, Medellín, Colombia
| | - Adriana Lucia Lopez Rios
- Hospital Universitario San Vicente Fundación, Medellín, Colombia; Hospital San Vicente Fundación, Rionegro, Colombia
| | - William D Hutchison
- Department of Physiology, University of Toronto, Canada; Krembil Brain Institute, Leonard St, Toronto Ontario, Canada; Hospital San Vicente Fundación, Rionegro, Colombia; Department of Surgery, University of Toronto, Canada
| |
Collapse
|
2
|
Tran S, Heida TC, Heijs JJA, Al-Ozzi T, Sumarac S, Alanazi FI, Kalia SK, Hodaie M, Lozano AM, Milosevic L, Chen R, Hutchison WD. Subthalamic and pallidal neurons are modulated during externally cued movements in Parkinson's disease. Neurobiol Dis 2024; 190:106384. [PMID: 38135193 DOI: 10.1016/j.nbd.2023.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
External sensory cues can reduce freezing of gait in people with Parkinson's disease (PD), yet the role of the basal ganglia in these movements is unclear. We used microelectrode recordings to examine modulations in single unit (SU) and oscillatory local field potentials (LFP) during auditory-cued rhythmic pedaling movements of the feet. We tested five blocks of increasing cue frequencies (1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz, and 3 Hz) in 24 people with PD undergoing deep brain stimulation surgery of the subthalamic nucleus (STN) or globus pallidus internus (GPi). Single unit firing and beta band LFPs (13-30 Hz) in response to movement onsets or cue onsets were examined. We found that the timing accuracy of foot pedaling decreased with faster cue frequencies. Increasing cue frequencies also attenuated firing rates in both STN and GPi neurons. Peak beta power in the GPi and STN showed different responses to the task. GPi beta power showed persistent suppression with fast cues and phasic modulation with slow cues. STN beta power showed enhanced beta synchronization following movement. STN beta power also correlated with rate of pedaling. Overall, we showed task-related responses in the GPi and STN during auditory-cued movements with differential roles in sensory and motor control. The results suggest a role for both input and output basal ganglia nuclei in auditory rhythmic pacing of gait-like movements in PD.
Collapse
Affiliation(s)
- Stephanie Tran
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Tjitske C Heida
- Department of Biomedical Signals and Systems, University of Twente, Enschede, the Netherlands
| | - Janne J A Heijs
- Department of Biomedical Signals and Systems, University of Twente, Enschede, the Netherlands
| | - Tameem Al-Ozzi
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Srdjan Sumarac
- Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Canada
| | - Frhan I Alanazi
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst St, Toronto, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Canada; Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst St, Toronto, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Canada; Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst St, Toronto, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Canada; Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada
| | - Luka Milosevic
- Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Canada
| | - Robert Chen
- Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada; Dept of Neurology, Temerty Faculty of Medicine, University of Toronto, Canada
| | - William D Hutchison
- Departments of Surgery and Physiology, Temerty Faculty of Medicine, University of Toronto, Canada, and Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada.
| |
Collapse
|