1
|
Ma J, Tang Z, Wu Y, Zhang J, Wu Z, Huang L, Liu S, Wang Y. Differences in Blood and Cerebrospinal Fluid Between Parkinson's Disease and Related Diseases. Cell Mol Neurobiol 2024; 45:9. [PMID: 39729132 DOI: 10.1007/s10571-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
It is difficult to distinguish Parkinson's disease (PD) in the early stage from those of various disorders including atypical Parkinson's syndrome (APS), vascular parkinsonism (VP), and even essential tremor (ET), because of the overlap of symptoms. Other, more challenging problems will arise when Parkinson's disease develops into Parkinson's disease dementia (PDD) in the middle and late stages. At this time, the differential diagnosis of PDD and DLB becomes thorny. These complicate the diagnostic process for PD, which traditionally heavily relies on symptomatic assessment and treatment response. Recent advances have identified several biomarkers in the blood and cerebrospinal fluid (CSF), including α-synuclein, lysosomal enzymes, fatty acid-binding proteins, and neurofilament light chain, whose concentration differs in PD and the related diseases. However, not all these molecules can effectively discriminate PD from related disorders. This review advocates for a paradigm shift toward biomarker-based diagnosis to effectively distinguish between PD and similar conditions. These biomarkers may reflect the diversity that exist among different diseases and provide an effective way to accurately understand their mechanisms. This review focused on blood and CSF biomarkers of PD that may have differential diagnostic value and the related molecular measurement methods with high diagnostic performance due to emerging technologies.
Collapse
Affiliation(s)
- Jie Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijian Tang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zitao Wu
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Lulu Huang
- Medical Affairs, The Department of ICON Pharma Development Solutions (IPD), ICON Public Limited Company (ICON Plc), Beijing, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Yang D, Chen F, Ren J, Wang L, Zhu Z, Wu Z, Jin Q, Luo Y, Huang H, Zhu B, Zhang Y, Lin Y, Zhou L, Mu G, Chen G. Longitudinal associations between cerebrospinal fluid glial activation markers, depression, and dopamine transporter availability in patients with Parkinson's disease. J Neurol 2024; 272:23. [PMID: 39666148 DOI: 10.1007/s00415-024-12779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Depression and decreased dopamine transporter (DAT) availability are prevalent in Parkinson's disease (PD), yet early predictive biomarkers are lacking. This study investigates the longitudinal associations between cerebrospinal fluid (CSF) neuroglial activation markers, sTREM2 and YKL-40, and depression, as well as DAT availability, in PD patients. METHODS We analyzed data from 172 PD subjects and 80 matched healthy controls from a large longitudinal study. A generalized linear mixed-effects model assessed the longitudinal associations of CSF sTREM2 and YKL-40 with depression and DAT availability. Causal mediation analysis determined if DAT decline mediated the effects of sTREM2 and YKL-40 on depression. RESULTS Cross-sectional analysis revealed a negative correlation between CSF sTREM2 and baseline depression scores in PD patients. CSF YKL-40 negatively correlated with baseline left caudate nucleus, left anterior putamen, and right anterior putamen specific binding ratios (SBR). Longitudinally, higher baseline CSF sTREM2 predicted faster depression progression (β = 0.828, p < 0.001) and a rapid decline in right putamen SBR (β = 0.072, p = 0.016). Similarly, higher baseline CSF YKL-40 predicted faster depression progression (β = 0.586, p = 0.004) and a decline in left anterior putamen SBR (β = 0.058, p = 0.035). Causal mediation analysis indicated that baseline CSF sTREM2 accelerated depression progression via its effect on right putamen and right anterior putamen SBR (Indirect effect = 0.103, p = 0.020; Indirect effect = 0.129, p = 0.016). CONCLUSION CSF sTREM2 and YKL-40 are effective predictors for depression and DAT decline in PD, suggesting that neuroglial activation-induced dopaminergic neuron apoptosis significantly contributes to depression onset in PD.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junli Ren
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingsheng Wang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhangjing Zhu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zihao Wu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiaoqiao Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuwen Luo
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoyang Huang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Baoyi Zhu
- The School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Zhang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuchen Lin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxuan Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guozhu Mu
- Department of Radiology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
3
|
Barba L, Abu-Rumeileh S, Barthel H, Massa F, Foschi M, Bellomo G, Gaetani L, Thal DR, Parnetti L, Otto M. Clinical and diagnostic implications of Alzheimer's disease copathology in Lewy body disease. Brain 2024; 147:3325-3343. [PMID: 38991041 DOI: 10.1093/brain/awae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/03/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
Concomitant Alzheimer's disease (AD) pathology is a frequent event in the context of Lewy body disease (LBD), occurring in approximately half of all cases. Evidence shows that LBD patients with AD copathology show an accelerated disease course, a greater risk of cognitive decline and an overall poorer prognosis. However, LBD-AD cases may show heterogeneous motor and non-motor phenotypes with a higher risk of dementia and, consequently, be not rarely misdiagnosed. In this review, we summarize the current understanding of LBD-AD by discussing the synergistic effects of AD neuropathological changes and Lewy pathology and their clinical relevance. Furthermore, we provide an extensive overview of neuroimaging and fluid biomarkers under assessment for use in LBD-AD and their possible diagnostic and prognostic values. AD pathology can be predicted in vivo by means of CSF, MRI and PET markers, whereas the most promising technique to date for identifying Lewy pathology in different biological tissues is the α-synuclein seed amplification assay. Pathological imaging and CSF AD biomarkers are associated with a higher likelihood of cognitive decline in LBD but do not always mirror the neuropathological severity as in pure AD. Implementing the use of blood-based AD biomarkers might allow faster screening of LBD patients for AD copathology, thus improving the overall diagnostic sensitivity for LBD-AD. Finally, we discuss the literature on novel candidate biomarkers being exploited in LBD-AD to investigate other aspects of neurodegeneration, such as neuroaxonal injury, glial activation and synaptic dysfunction. The thorough characterization of AD copathology in LBD should be taken into account when considering differential diagnoses of dementia syndromes, to allow prognostic evaluation on an individual level, and to guide symptomatic and disease-modifying therapies.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig 04103, Germany
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Matteo Foschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila 67100, Italy
- Department of Neuroscience, Neurology Unit, S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna 48121, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Dietmar R Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Leuven 3001, Belgium
- Department of Pathology, UZ Leuven, Leuven 3000, Belgium
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| |
Collapse
|
4
|
Gaetani L, Paolini Paoletti F, Mechelli A, Bellomo G, Parnetti L. Research advancement in fluid biomarkers for Parkinson's disease. Expert Rev Mol Diagn 2024; 24:885-898. [PMID: 39262126 DOI: 10.1080/14737159.2024.2403073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Diagnostic criteria for Parkinson's disease (PD) rely on clinical, mainly motor, features, implying that pre-motor phase cannot be accurately identified. To achieve a reliable early diagnosis, similar to what has been done for Alzheimer's disease (AD), a shift from clinical to biological identification of PD is being pursued. This shift has taken great advantage from the research on cerebrospinal fluid (CSF) biomarkers as they mirror the ongoing molecular pathogenic mechanisms taking place in PD, thus intercepting the disease timely with respect to clinical manifestations. AREAS COVERED CSF α-synuclein seed amplification assay (αS-SAA) has emerged as the most promising biomarker of α-synucleinopathy. CSF biomarkers reflecting AD-pathology and axonal damage (neurofilament light chain) and a novel marker of dopaminergic dysfunction (DOPA decarboxylase) add valuable diagnostic and prognostic information in the neurochemical characterization of PD. EXPERT OPINION A biological classification system of PD, encompassing pathophysiological and staging biomarkers, might ensure both early identification and prognostic characterization of the patients. This approach could allow for the best setting for disease-modifying treatments which are currently under investigation.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Alessandro Mechelli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Pyrgelis ES, Paraskevas GP, Constantinides VC, Boufidou F, Stefanis L, Kapaki E. In Vivo Prevalence of Beta-Amyloid Pathology and Alzheimer's Disease Co-Pathology in Idiopathic Normal-Pressure Hydrocephalus-Association with Neuropsychological Features. Biomedicines 2024; 12:1898. [PMID: 39200362 PMCID: PMC11351685 DOI: 10.3390/biomedicines12081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Idiopathic normal-pressure hydrocephalus (iNPH) is a clinic-radiological neurological syndrome presenting with cognitive deficits, gait disturbances and urinary incontinence. It often coexists with Alzheimer's disease (AD). Due to the reversible nature of iNPH when promptly treated, a lot of studies have focused on possible biomarkers, among which are cerebrospinal fluid (CSF) biomarkers. The aim of the present study was to determine the rate of beta-amyloid pathology and AD co-pathology by measuring AD CSF biomarkers, namely, amyloid beta with 42 and 40 amino acids (Aβ42), the Aβ42/Aβ40 ratio, total Tau protein (t-Tau) and phosphorylated Tau protein at threonine 181 (p-Tau), in a cohort of iNPH patients, as well as to investigate the possible associations among CSF biomarkers and iNPH neuropsychological profiles. Fifty-three patients with iNPH were included in the present study. CSF Aβ42, Aβ40, t-Tau and p-Tau were measured in duplicate with double-sandwich ELISA assays. The neuropsychological evaluation consisted of the Mini-Mental State Examination, Frontal Assessment Battery, Five-Word Test and CLOX drawing tests 1 and 2. After statistical analysis, we found that amyloid pathology and AD co-pathology are rather common in iNPH patients and that higher values of t-Tau and p-Tau CSF levels, as well as the existence of the AD CSF profile, are associated with more severe memory impairment in the study patients. In conclusion, our study has confirmed that amyloid pathology and AD-co-pathology are rather common in iNPH patients and that CSF markers of AD pathology and t-Tau are associated with a worse memory decline in these patients.
Collapse
Affiliation(s)
- Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece; (E.-S.P.); (V.C.C.); (L.S.)
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece; (G.P.P.); (F.B.)
| | - George P. Paraskevas
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece; (G.P.P.); (F.B.)
- 2nd Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” University General Hospital, Rimini 1, 12462 Athens, Greece
| | - Vasilios C. Constantinides
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece; (E.-S.P.); (V.C.C.); (L.S.)
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece; (G.P.P.); (F.B.)
| | - Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece; (G.P.P.); (F.B.)
| | - Leonidas Stefanis
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece; (E.-S.P.); (V.C.C.); (L.S.)
| | - Elisabeth Kapaki
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece; (E.-S.P.); (V.C.C.); (L.S.)
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Vass. Sophias Ave. 74, 11528 Athens, Greece; (G.P.P.); (F.B.)
| |
Collapse
|
6
|
Lin C, Kong Y, Chen Q, Zeng J, Pan X, Miao J. Decoding sTREM2: its impact on Alzheimer's disease - a comprehensive review of mechanisms and implications. Front Aging Neurosci 2024; 16:1420731. [PMID: 38912524 PMCID: PMC11190086 DOI: 10.3389/fnagi.2024.1420731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). This review comprehensively examines sTREM2's involvement in AD, focusing on its regulatory functions in microglial responses, neuroinflammation, and interactions with key pathological processes. We discuss the dynamic changes in sTREM2 levels in cerebrospinal fluid and plasma throughout AD progression, highlighting its potential as a therapeutic target. Furthermore, we explore the impact of genetic variants on sTREM2 expression and its interplay with other AD risk genes. The evidence presented in this review suggests that modulating sTREM2 activity could influence AD trajectory, making it a promising avenue for future research and drug development. By providing a holistic understanding of sTREM2's multifaceted role in AD, this review aims to guide future studies and inspire novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Lin
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Yu Kong
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Qian Chen
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jixiang Zeng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaojin Pan
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jifei Miao
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Wang R, Zhan Y, Zhu W, Yang Q, Pei J. Association of soluble TREM2 with Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1407980. [PMID: 38841103 PMCID: PMC11150578 DOI: 10.3389/fnagi.2024.1407980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Objective Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) is a potential neuroinflammatory biomarker linked to the pathogenesis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Previous studies have produced inconsistent results regarding sTREM2 levels in various clinical stages of AD. This study aims to establish the correlation between sTREM2 levels and AD progression through a meta-analysis of sTREM2 levels in cerebrospinal fluid (CSF) and blood. Methods Comprehensive searches were conducted in PubMed, Embase, Web of Science, and the Cochrane Library to identify observational studies reporting CSF and blood sTREM2 levels in AD patients, MCI patients, and healthy controls. A random effects meta-analysis was used to calculate the standardized mean difference (SMD) and 95% confidence intervals (CIs). Results Thirty-six observational studies involving 3,016 AD patients, 3,533 MCI patients, and 4,510 healthy controls were included. CSF sTREM2 levels were significantly higher in both the AD [SMD = 0.28, 95% CI (0.15, 0.41)] and MCI groups [SMD = 0.30, 95% CI (0.13, 0.47)] compared to the healthy control group. However, no significant differences in expression were detected between the AD and MCI groups [SMD = 0.09, 95% CI (-0.09, 0.26)]. Furthermore, increased plasma sTREM2 levels were associated with a higher risk of AD [SMD = 0.42, 95% CI (0.01, 0.83)]. Conclusion CSF sTREM2 levels are positively associated with an increased risk of AD and MCI. Plasma sTREM2 levels were notably higher in the AD group than in the control group and may serve as a promising biomarker for diagnosing AD. However, sTREM2 levels are not effective for distinguishing between different disease stages of AD. Further investigations are needed to explore the longitudinal changes in sTREM2 levels, particularly plasma sTREM2 levels, during AD progression. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024514593.
Collapse
Affiliation(s)
| | | | | | | | - Jian Pei
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Mulroy E, Erro R, Bhatia KP, Hallett M. Refining the clinical diagnosis of Parkinson's disease. Parkinsonism Relat Disord 2024; 122:106041. [PMID: 38360507 PMCID: PMC11069446 DOI: 10.1016/j.parkreldis.2024.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Our ability to define, understand, and classify Parkinson's disease (PD) has undergone significant changes since the disorder was first described in 1817. Clinical features and neuropathologic signatures can now be supplemented by in-vivo interrogation of genetic and biological substrates of disease, offering great opportunity for further refining the diagnosis of PD. In this mini-review, we discuss the historical perspectives which shaped our thinking surrounding the definition and diagnosis of PD. We highlight the clinical, genetic, pathologic and biologic diversity which underpins the condition, and proceed to discuss how recent developments in our ability to define biologic and pathologic substrates of disease might impact PD definition, diagnosis, individualised prognostication, and personalised clinical care. We argue that Parkinson's 'disease', as currently diagnosed in the clinic, is actually a syndrome. It is the outward manifestation of any array of potential dysfunctional biologic processes, neuropathological changes, and disease aetiologies, which culminate in common outward clinical features which we term PD; each person has their own unique disease, which we can now define with increasing precision. This is an exciting time in PD research and clinical care. Our ability to refine the clinical diagnosis of PD, incorporating in-vivo assessments of disease biology, neuropathology, and neurogenetics may well herald the era of biologically-based, precision medicine approaches PD management. With this however comes a number of challenges, including how to integrate these technologies into clinical practice in a way which is acceptable to patients, promotes meaningful changes to care, and minimises health economic impact.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, (SA), Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|