1
|
Xiao Y, Gan LH, Liang XN, Xu ZH, Hu TY, Li XY, Tang YL, Wang J, Liu YQ. Association of plasma homocysteine with cognitive impairment in patients with Parkinson's disease. Front Aging Neurosci 2024; 16:1434943. [PMID: 39717347 PMCID: PMC11663914 DOI: 10.3389/fnagi.2024.1434943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Background Elevated plasma homocysteine (Hcy) has been reported as a risk factor for cognitive impairment in the general population. However, there are conflicting results regarding the relationship between Hcy and cognitive impairment across various cognitive domains in Parkinson's disease (PD). Objective This study aims to explore the association between plasma Hcy levels, cognitive impairment, and dysfunction in various cognitive domains among PD patients with and without mild cognitive impairment (MCI). Methods A total of 101 PD patients underwent plasma Hcy measurement, comprising 50 PD-MCI patients and 51 patients with normal cognition (PD-NC). A battery of neuropsychological tests was administered to assess different cognitive domains. Adjusted generalized linear models were used to assess the correlations between Hcy levels and cognitive functions. Results As anticipated, PD-MCI patients demonstrated a significant decline in cognitive function across all five cognitive domains (memory, executive function, attention/working memory, language, and visuospatial function). Elevated plasma Hcy levels (≥ 10 μmol/L) were associated with a higher odds of PD-MCI, even within the normal range of Hcy levels (< 15 μmol/L). After adjusting for confounding factors, a negative correlation was observed between plasma Hcy levels and the performance on specific cognitive tests evaluating executive functions in PD, such as the Stroop Color-Word Test-C (β = -1.123, 95% CI = -1.845 ∼-0.401, p = 0.0023). Conclusion This study underscores a significant link between plasma Hcy levels and PD-MCI, particularly concerning executive dysfunction, even within the normal range of Hcy levels (< 15 μmol/L).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Lin Tang
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Qi Liu
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
3
|
Morais LH, Boktor JC, MahmoudianDehkordi S, Kaddurah-Daouk R, Mazmanian SK. α-synuclein overexpression and the microbiome shape the gut and brain metabolome in mice. NPJ Parkinsons Dis 2024; 10:208. [PMID: 39477976 PMCID: PMC11525669 DOI: 10.1038/s41531-024-00816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Pathological forms of α-synuclein contribute to synucleinopathies, including Parkinson's disease (PD). Most cases of PD arise from gene-environment interactions. Microbiome composition is altered in PD, and gut bacteria are causal to symptoms in animal models. We quantitatively profiled nearly 630 metabolites in the gut, plasma, and brain of α-synuclein-overexpressing (ASO) mice, compared to wild-type (WT) animals, and comparing germ-free (GF) to specific pathogen-free (SPF) animals (n = 5 WT-SPF; n = 6 ASO-SPF; n = 6 WT-GF; n = 6 ASO-GF). Many differentially expressed metabolites in ASO mice are also dysregulated in human PD patients, including amine oxides, bile acids and indoles. The microbial metabolite trimethylamine N-oxide (TMAO) strongly correlates from the gut to the plasma to the brain in mice, notable since TMAO is elevated in the blood and cerebrospinal fluid of PD patients. These findings uncover broad metabolomic changes that are influenced by the intersection of host genetics and microbiome in a mouse model of PD.
Collapse
Affiliation(s)
- Livia H Morais
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Joseph C Boktor
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
4
|
Stagaman K, Kmiecik MJ, Wetzel M, Aslibekyan S, Sonmez TF, Fontanillas P, Tung J, Holmes MV, Walk ST, Houser MC, Norcliffe-Kaufmann L. Oral and gut microbiome profiles in people with early idiopathic Parkinson's disease. COMMUNICATIONS MEDICINE 2024; 4:209. [PMID: 39443634 PMCID: PMC11499922 DOI: 10.1038/s43856-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Early detection of Parkinson's disease (PD), a neurodegenerative disease with central and peripheral nerve involvement, ensures timely treatment access. Microbes influence nervous system health and are altered in PD. METHODS We examined gut and mouth microbiomes from recently diagnosed patients in a geographically diverse, matched case-control, shotgun metagenomics study. RESULTS Here, we show greater alpha-diversity in 445 PD patients versus 221 controls. The microbial signature of PD includes overabundance of 16 OTUs, including Streptococcus mutans and Bifidobacterium dentium, and depletion of 28 OTUs. Machine learning models indicate that subspecies level oral microbiome abundances best distinguish PD with reasonably high accuracy (area under the curve: 0.758). Microbial networks are disrupted in cases, with reduced connectivity between short-chain fatty acid-producing bacteria the the gut. Importantly, microbiome diversity metrics are associated with non-motor autonomic symptom severity. CONCLUSIONS Our results provide evidence that predictive oral PD microbiome signatures could possibly be used as biomarkers for the early detection of PD, particularly when there is peripheral nervous system involvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Madelyn C Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
5
|
Sun J, Zhang Y. Microbiome and micronutrient in ALS: From novel mechanisms to new treatments. Neurotherapeutics 2024; 21:e00441. [PMID: 39218769 PMCID: PMC11585885 DOI: 10.1016/j.neurot.2024.e00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disorder. Despite extensive studies, it remains challenging to treat ALS. Recent ALS studies have shown dysbiosis (e.g., loss of microbial diversity and beneficial function in the gut microbiota) is correlated with intestinal inflammation and change of intestinal integrity in ALS. The novel concepts and the roles of microbiome and microbial metabolites through the gut-microbiome-neuron axis in ALS pathogenesis have been slowly recognized by the neurology research field. Here, we will discuss the recent progress of microbiome, including bacteria, fungi, and viruses, in the ALS research. We will discuss our understanding of microbial metabolites in ALS. Micronutrition refers to the intake of essential vitamins, minerals, and other micronutrients. We will summarize the literation related to micronutrition and ALS. Furthermore, we will consider the mutual interactions of microbiome and micronutrition in the ALS progression and treatment. We further propose that the mechanistic and translational studies that shift from suspension of disbelief to cogent ingenuity, and from bench study to bed-side application, should allow new strategies of diagnosis and treatment for ALS.
Collapse
Affiliation(s)
- Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Morais LH, Boktor JC, MahmoudianDehkordi S, Kaddurah-Daouk R, Mazmanian SK. α-Synuclein Overexpression and the Microbiome Shape the Gut and Brain Metabolome in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597975. [PMID: 38915679 PMCID: PMC11195096 DOI: 10.1101/2024.06.07.597975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Pathological forms of the protein α-synuclein contribute to a family of disorders termed synucleinopathies, which includes Parkinson's disease (PD). Most cases of PD are believed to arise from gene-environment interactions. Microbiome composition is altered in PD, and gut bacteria are causal to symptoms and pathology in animal models. To explore how the microbiome may impact PD-associated genetic risks, we quantitatively profiled nearly 630 metabolites from 26 biochemical classes in the gut, plasma, and brain of α-synuclein-overexpressing (ASO) mice with or without microbiota. We observe tissue-specific changes driven by genotype, microbiome, and their interaction. Many differentially expressed metabolites in ASO mice are also dysregulated in human PD patients, including amine oxides, bile acids and indoles. Notably, levels of the microbial metabolite trimethylamine N-oxide (TMAO) strongly correlate from the gut to the plasma to the brain, identifying a product of gene-environment interactions that may influence PD-like outcomes in mice. TMAO is elevated in the blood and cerebral spinal fluid of PD patients. These findings uncover broad metabolomic changes that are influenced by the intersection of host genetics and the microbiome in a mouse model of PD.
Collapse
Affiliation(s)
- Livia H. Morais
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Joseph C. Boktor
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Sarkis K. Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| |
Collapse
|
7
|
Shebl N, Salama M. From metabolomics to proteomics: understanding the role of dopa decarboxylase in Parkinson's disease. Scientific commentary on: "Comprehensive proteomics of CSF, plasma, and urine identify DDC and other biomarkers of early Parkinson's disease". Acta Neuropathol 2024; 147:88. [PMID: 38761253 DOI: 10.1007/s00401-024-02739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Affiliation(s)
- Nourhan Shebl
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt.
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland.
- Faculty of Medicine, Mansoura University, El Mansûra, Egypt.
| |
Collapse
|
8
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|