1
|
Wang S, Liu Z, Wang J, Cheng L, Hu J, Tang J. Platelet-rich plasma (PRP) in nerve repair. Regen Ther 2024; 27:244-250. [PMID: 38586873 PMCID: PMC10997806 DOI: 10.1016/j.reth.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Platelet-rich plasma (PRP) has the capability of assisting in the recovery of damaged tissues by releasing a variety of biologically active factors to initiate a hemostatic cascade reaction and promote the synthesis of new connective tissue and revascularization. It is now widely used for tissue engineering repair. In addition, PRP has demonstrated nerve repair and pain relief, and has been studied and applied to the facial nerve, median nerve, sciatic nerve, and central nerve. These suggest that PRP injection therapy has a positive effect on nerve repair. This indicates that PRP has high clinical value and potential application in nerve repair. It is worthwhile for scientists and medical workers to further explore and study PRP to expand its application in nerve repair, and to provide a more reliable scientific basis for the opening of a new approach to nerve repair.
Collapse
Affiliation(s)
- Siyu Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Zhengping Liu
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Jianing Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Lulu Cheng
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
- College of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinfeng Hu
- Department of Orthopedics, Wuhan University Renmin Hospital, NO. 239 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jin Tang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Wuhan Sports University, NO 279 Luoyu Road, Hongshan District, Wuhan, 430079, Hubei, China
| |
Collapse
|
2
|
Yu L, Bennett CJ, Lin CH, Yan S, Yang J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng 2024; 21:041001. [PMID: 38996412 DOI: 10.1088/1741-2552/ad628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.
Collapse
Affiliation(s)
- Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Carly Jane Bennett
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| |
Collapse
|
3
|
Khaled MM, Ibrahium AM, Abdelgalil AI, El-Saied MA, Yassin AM, Abouquerin N, Rizk H, El-Bably SH. Efficacy of using adipose-derived stem cells and PRP on regeneration of 40 -mm long sciatic nerve defect bridged by polyglycolic-polypropylene mesh in canine model. Stem Cell Res Ther 2024; 15:212. [PMID: 39020391 PMCID: PMC11256418 DOI: 10.1186/s13287-024-03796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/10/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Sciatic nerve repair becomes a focus of research in neurological aspect to restore the normal physical ability of the animal to stand and walk. Tissue engineered nerve grafts (TENGs) provide a promising alternative therapy for regeneration of large gap defects. The present study investigates the regenerative capacity of PRP, ADSCs, and PRP mixed ADSCs on a long sciatic nerve defect (40-mm) bridged by a polyglycolic polypropylene (PGA-PRL) mesh which acts as a neural scaffold. MATERIALS AND METHODS The study was conducted on 12 adult male mongrel dogs that were randomly divided into 4 groups: Group I (scaffold group); where the sciatic defect was bridged by a (PGA-PRL) mesh only while the mesh was injected with ADSCs in Group II (ADSCs group), PRP in Group III (PRP group). Mixture of PRP and ADSCs was allocated in Group IV (PRP + ADSCs group). Monthly, all animals were monitored for improvement in their gait and a numerical lameness score was recorded for all groups. 6 months-post surgery, the structural and functional recovery of sciatic nerve was evaluated electrophysiologically, and on the level of gene expression, and both sciatic nerve and the gastrocnemius muscle were evaluated morphometrically, histopathologically. RESULTS Numerical lameness score showed improvement in the motor activities of both Group II and Group III followed by Group IV and the scaffold group showed mild improvement even after 6 months. Histopathologically, all treated groups showed axonal sprouting and numerous regenerated fascicles with obvious angiogenesis in proximal cut, and distal portion where Group IV exhibited a significant remyelination with the MCOOL technique. The regenerative ratio of gastrocnemius muscle was 23.81%, 56.68%, 52.06% and 40.69% for Group I, II, III and IV; respectively. The expression of NGF showed significant up regulation in the proximal portion for both Group III and Group IV (P ≤ 0.0001) while Group II showed no significant difference. PDGF-A, and VEGF expressions were up-regulated in Group II, III, and IV whereas Group I showed significant down-regulation for NGF, PDGF-A, and VEGF (P ≤ 0.0001). CONCLUSION ADSCs have a great role in restoring the damaged nerve fibers by secreting several types of growth factors like NGF that have a proliferative effect on Schwann cells and their migration. In addition, PRP therapy potentiates the effect of ADSCs by synthesis another growth factors such as PDGF-A, VEGF, NGF for better healing of large sciatic gap defects.
Collapse
Affiliation(s)
- Mona M Khaled
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa M Ibrahium
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed I Abdelgalil
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nagy Abouquerin
- Department of Physiology, Faculty of medicine, Ain shams University, Cairo, Egypt
| | - Hamdy Rizk
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Samah H El-Bably
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Zhang Y, Yi D, Hong Q, Liu C, Chi K, Liu J, Li X, Ye Y, Zhu Y, Peng N. Platelet-rich plasma-derived exosomes enhance mesenchymal stem cell paracrine function and nerve regeneration potential. Biochem Biophys Res Commun 2024; 699:149496. [PMID: 38290175 DOI: 10.1016/j.bbrc.2024.149496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Peripheral nerve injury (PNI) presents a significant clinical challenge, leading to enduring sensory-motor impairments. While mesenchymal stem cell (MSC)-based therapy holds promise for PNI treatment, enhancing its neurotrophic effects remains crucial. Platelet-rich plasma-derived exosomes (PRP-Exo), rich in bioactive molecules for intercellular communication, offer potential for modulating cellular biological activity. METHODS PRP-Exo was isolated, and its impact on MSC viability was evaluated. The effects of PRP-Exo-treated MSCs (MSCPExo) on Schwann cells (SCs) from injured sciatic nerves and human umbilical vein endothelial cells (HUVECs) were assessed. Furthermore, the conditioned medium from MSCPExo (MSCPExo-CM) was analyzed using a cytokine array and validated through ELISA and Western blot. RESULTS PRP-Exo enhanced MSC viability. Coculturing MSCPExo with SCs ameliorated apoptosis and promoted SC proliferation following PNI. Similarly, MSCPExo-CM exhibited pro-proliferative, migratory, and angiogenic effects. Cytokine array analysis identified 440 proteins in the MSCPExo secretome, with 155 showing upregulation and 6 showing downregulation, many demonstrating potent pro-regenerative properties. ELISA confirmed the enrichment of several angiotrophic and neurotrophic factors. Additionally, Western blot analysis revealed the activation of the PI3K/Akt signaling pathway in MSCPExo. CONCLUSION Preconditioning MSCs with PRP-Exo enhanced the paracrine function, particularly augmenting neurotrophic and pro-angiogenic secretions, demonstrating an improved potential for neural repair.
Collapse
Affiliation(s)
- Yongyi Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China; State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China; No.962 Hospital of the PLA Joint Logistic Support Force, Harbin, 150080, China
| | - Dan Yi
- Medical School of Chinese PLA, Beijing, 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Quan Hong
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Liu
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kun Chi
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jinwei Liu
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaofan Li
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Ye
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yaqiong Zhu
- Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Nan Peng
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Zhang Y, Yi D, Hong Q, Cao J, Geng X, Liu J, Xu C, Cao M, Chen C, Xu S, Zhang Z, Li M, Zhu Y, Peng N. Platelet-rich plasma-derived exosomes boost mesenchymal stem cells to promote peripheral nerve regeneration. J Control Release 2024; 367:265-282. [PMID: 38253204 DOI: 10.1016/j.jconrel.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Peripheral nerve injury (PNI) remains a severe clinical problem with debilitating consequences. Mesenchymal stem cell (MSC)-based therapy is promising, but the problems of poor engraftment and insufficient neurotrophic effects need to be overcome. Herein, we isolated platelet-rich plasma-derived exosomes (PRP-Exos), which contain abundant bioactive molecules, and investigated their potential to increase the regenerative capacity of MSCs. We observed that PRP-Exos significantly increased MSC proliferation, viability, and mobility, decreased MSC apoptosis under stress, maintained MSC stemness, and attenuated MSC senescence. In vivo, PRP-Exo-treated MSCs (pExo-MSCs) exhibited an increased retention rate and heightened therapeutic efficacy, as indicated by increased axonal regeneration, remyelination, and recovery of neurological function in a PNI model. In vitro, pExo-MSCs coculture promoted Schwann cell proliferation and dorsal root ganglion axon growth. Moreover, the increased neurotrophic behaviour of pExo-MSCs was mediated by trophic factors, particularly glia-derived neurotrophic factor (GDNF), and PRP-Exos activated the PI3K/Akt signalling pathway in MSCs, leading to the observed phenotypes. These findings demonstrate that PRP-Exos may be novel agents for increasing the ability of MSCs to promote neural repair and regeneration in patients with PNI.
Collapse
Affiliation(s)
- Yongyi Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; No.962 Hospital of the PLA Joint Logistic Support Force, Harbin 150080, China
| | - Dan Yi
- Medical School of Chinese PLA, Beijing 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Quan Hong
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiangbei Cao
- Departments of Anaesthesiology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaodong Geng
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinwei Liu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuang Xu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengyu Cao
- Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Chen
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuaixuan Xu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Molin Li
- Medical School of Chinese PLA, Beijing 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaqiong Zhu
- Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China.
| | - Nan Peng
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
6
|
Yi D, Zhang Y, Li M, Chen J, Chen X, Wang L, Xing G, Chen S, Zhu Y, Wang Y. Ultrasound-Targeted Microbubble Destruction Assisted Delivery of Platelet-Rich Plasma-Derived Exosomes Promoting Peripheral Nerve Regeneration. Tissue Eng Part A 2023; 29:645-662. [PMID: 37612613 DOI: 10.1089/ten.tea.2023.0133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Peripheral nerve injury is prevalent and has a high disability rate in clinical settings. Current therapeutic methods have not achieved satisfactory efficacy, underscoring the need for novel approaches to nerve restoration that remains an active area of research in neuroscience and regenerative medicine. In this study, we isolated platelet-rich plasma-derived exosomes (PRP-exos) and found that they can significantly enhance the proliferation, migration, and secretion of trophic factors by Schwann cells (SCs). In addition, there were marked changes in transcriptional and expression profiles of SCs, particularly via the upregulation of genes related to biological functions involved in nerve regeneration and repair. In the rat model of sciatic nerve crush injury, ultrasound-targeted microbubble destruction (UTMD) enhanced the efficiency of PRP-exos delivery to the injury site. This approach ensured a high concentration of PRP-exos in the injured nerve and improved the therapeutic outcomes. In conclusion, PRP-exos may promote nerve regeneration and repair, and UTMD may increase the effectiveness of targeted PRP-exos delivery to the injured nerve and enhance the therapeutic effect.
Collapse
Affiliation(s)
- Dan Yi
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yongyi Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Rehabilitation Medicine, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- No.962 Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Molin Li
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jian Chen
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical College of Nankai University, Tianjin, China
| | - Xianghui Chen
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Li Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guanghui Xing
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Siming Chen
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yaqiong Zhu
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuexiang Wang
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Bejarano MC, Clearfield DA. Platelet Releasate Injection as a Novel Treatment for Ulnar Neuritis at the Elbow: A Case Report. Cureus 2023; 15:e42223. [PMID: 37605660 PMCID: PMC10440148 DOI: 10.7759/cureus.42223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
This report examines the efficacy of platelet releasate injection as a treatment method for ulnar neuritis. Platelet-rich plasma (PRP), an autologous product of concentrated platelets, has the potential to accelerate healing in injured peripheral nerves by releasing growth factors that promote nerve repair. Platelet releasate, the supernatant of thrombin-activated PRP, has yet to be thoroughly investigated as a treatment option for ulnar neuritis. In this report, a 42-year-old female patient presented with right-sided elbow and neck pain that was subsequently diagnosed as ulnar neuritis and neurogenic thoracic outlet syndrome. Initial imaging at the right elbow demonstrated ulnar nerve entrapment within the arcade of Struthers. The patient's symptoms were first managed with home exercise and ulnar nerve hydrodissection at the elbow, which decreased but did not resolve her pain. Platelet releasate injection of the ulnar nerve at the elbow was subsequently performed. Six weeks post-procedure, the patient reported additional pain improvement. Provocative tests at the elbow were negative and imaging demonstrated a normal-appearing ulnar nerve. Despite these results, the patient was not completely symptom-free; persistent symptoms were attributed to her concomitant neurogenic thoracic outlet syndrome. While platelet releasate injection has not previously been explored as a treatment option for ulnar neuritis, this case demonstrates how platelet releasate injection may facilitate healing in an ulnar nerve injured by entrapment. Further investigation could support platelet releasate injection as an effective monotherapy or as an adjunct treatment for ulnar neuritis and similar peripheral neuropathies.
Collapse
Affiliation(s)
- Michael C Bejarano
- Medicine, Texas College of Osteopathic Medicine at University of North Texas Health Science Center, Fort Worth, USA
| | - Daniel A Clearfield
- Sports Medicine, Motion Is Medicine Sports Medicine, North Richland Hills, USA
| |
Collapse
|
8
|
Williams C, Redmond T, Stafford C, Sussman W. Traumatic Humeral Shaft Non-union With Ulnar Nerve Transection: An Orthobiologics Success Story. Cureus 2023; 15:e35189. [PMID: 36960259 PMCID: PMC10030099 DOI: 10.7759/cureus.35189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2023] [Indexed: 02/21/2023] Open
Abstract
Long bone non-union is a detrimental, yet common condition that affects many individuals after injury. It can lead to significant pain and weakness that may impact lifetime productivity and quality of life. This report describes a patient who suffered from greater than two years of a distal humerus fracture non-union along with an ulnar nerve transection that failed traditional surgical management and underwent a percutaneous injection with bone marrow aspirate concentrate, platelet-rich plasma, and platelet lysate, demonstrating subsequent fracture resolution and strength improvement.
Collapse
Affiliation(s)
- Christopher Williams
- Physical Medicine and Rehabilitation, Interventional Orthopedics and Regenerative Medicine, Interventional Orthopedics of Atlanta, Atlanta, USA
- Physical Medicine and Rehabilitation, Emory University School of Medicine, Atlanta, USA
| | - Travis Redmond
- Physical Medicine and Rehabilitation, Emory University School of Medicine, Atlanta, USA
| | - Cleo Stafford
- Physical Medicine and Rehabilitation, Emory University School of Medicine, Atlanta, USA
- Orthopedics, Emory University School of Medicine, Atlanta, USA
| | - Walter Sussman
- Physical Medicine and Rehabilitation, Tufts Medical Center, Atlanta, USA
- Sports Medicine, Boston Sports and Biologics, Atlanta, USA
| |
Collapse
|
9
|
Wang YS, Wang SL, Liu XL, Kang ZC. Platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury. Neural Regen Res 2023; 18:375-381. [PMID: 35900433 PMCID: PMC9396478 DOI: 10.4103/1673-5374.346461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The effect of platelet-rich plasma on nerve regeneration remains controversial. In this study, we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with platelet-rich plasma. Twenty-eight rabbits were divided into the following groups (7 rabbits/group): model, low-concentration PRP (2.5–3.5-fold concentration of whole blood platelets), medium-concentration PRP (4.5–6.5-fold concentration of whole blood platelets), and high-concentration PRP (7.5–8.5-fold concentration of whole blood platelets). Electrophysiological and histomorphometrical assessments and proteomics analysis were used to evaluate regeneration of the sciatic nerve. Our results showed that platelet-rich plasma containing 4.5–6.5- and 7.5–8.5-fold concentrations of whole blood platelets promoted repair of sciatic nerve injury. Proteomics analysis was performed to investigate the possible mechanism by which platelet-rich plasma promoted nerve regeneration. Proteomics analysis showed that after sciatic nerve injury, platelet-rich plasma increased the expression of integrin subunit β-8 (ITGB8), which participates in angiogenesis, and differentially expressed proteins were mainly enriched in focal adhesion pathways. Additionally, two key proteins, ribosomal protein S27a (RSP27a) and ubiquilin 1 (UBQLN1), which were selected after protein-protein interaction analysis, are involved in the regulation of ubiquitin levels in vivo. These data suggest that platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury by affecting angiogenesis and intracellular ubiquitin levels.
Collapse
|
10
|
Jiao Y, Zhang Q, Zhang J, Zha Y, Wang J, Li Y, Zhang S. Platelet-rich plasma ameliorates lipopolysaccharide-induced cardiac injury by inflammation and ferroptosis regulation. Front Pharmacol 2022; 13:1026641. [PMID: 36330090 PMCID: PMC9623117 DOI: 10.3389/fphar.2022.1026641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is a fatal disease with no specific treatment worldwide to this day. As a biological product, platelet-rich plasma (PRP) has attracted much attention due to its diverse and potential biological effects. However, its role in lipopolysaccharide (LPS)-induced cardiac injury has not been fully investigated. This study aimed to explore the mechanism of PRP in SIMD. PRP (30 µL) was injected in situ into the heart, and LPS (10 mg/kg) was injected intraperitoneally into mice. Neonatal rat cardiomyocytes were treated with LPS (1 μg/ml) for 24 h. The results showed that, compared with the LPS group, PRP significantly decreased the levels of Lactate dehydrogenase (LDH) and Creatine Kinase MB (CK-MB), and improved cardiac function. In addition, PRP markedly decreased the Malonic dialdehyde (MDA) content, and increased the Superoxide dismutase (SOD) activity and Glutathione (GSH) level, demonstrating that PRP alleviated LPS-induced oxidative stress. The Western blot and qPCR results showed that LPS-induced ferroptosis and inflammation effects in vivo and in vitro were ameliorated after PRP treatment. Moreover, PRP can alleviate erastin-induced ferroptosis and improve cell viability. Mechanistically, p-AKT and p-mTOR expressions were down-regulated after treatment with LPS, while PRP pretreatment could reverse this effect. In summary, our study demonstrated that PRP could play a unique role in reducing LPS-induced cardiac injury through regulation of AKT/mTOR signaling pathways. These findings provide a new therapeutic direction for treating SIMD.
Collapse
Affiliation(s)
- Yuheng Jiao
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyu Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jiayan Zhang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafang Zha
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yanyan Li, ; Song Zhang,
| | - Song Zhang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yanyan Li, ; Song Zhang,
| |
Collapse
|
11
|
Platelet-rich plasma loaded nerve guidance conduit as implantable biocompatible materials for recurrent laryngeal nerve regeneration. NPJ Regen Med 2022; 7:49. [PMID: 36104458 PMCID: PMC9474804 DOI: 10.1038/s41536-022-00239-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractVocal cord paralysis caused by recurrent laryngeal nerve (RLN) injury during thyroidectomy results in hoarseness, aspiration, and dyspnea. We evaluated the usefulness of nerve guidance conduits (NGCs) constructed from an asymmetric polycaprolactone (PCL)/Pluronic F127 porous membrane and filled with platelet-rich plasma (PRP) for functional RLN regeneration. We evaluated the proliferation and migration of Schwann cells (SCs) after PRP treatment in vitro. For the in vivo study, rabbits were divided into a non-loaded NGC group and a PRP-loaded NGC group. The left RLNs were resected and interposed with the NGCs. Functional and histological examinations of the vocal cords were performed. SC proliferation and migration increased in a PRP dose-dependent manner, with the PRP increasing the levels of neurotrophic factors, myelin-associated glycoprotein, and ERK. In vivo, the PRP group showed significantly better vocal cord mobility and less vocalis muscle atrophy than the non-loaded NGC group. Histologically, the ingrowth of nerve endings occurred more rapidly in the PRP group, and acetylcholinesterase, neurofilament, and S-100 expression in neural endings were significantly higher in the PRP group. Furthermore, transmission electron microscopy showed that myelinated axons were more tightly packed in the PRP group. This study shows that PRP-loaded NGCs provide a favorable environment for neural regeneration and suggests that this technique has therapeutic potential for promoting RLN recovery.
Collapse
|
12
|
Pandunugrahadi M, Irianto KA, Sindrawati O. The Optimal Timing of Platelet-Rich Plasma (PRP) Injection for Nerve Lesion Recovery: A Preliminary Study. Int J Biomater 2022; 2022:9601547. [PMID: 35573271 PMCID: PMC9106496 DOI: 10.1155/2022/9601547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Without appropriate treatment, nerve injuries may result in permanent loss of function. Platelet-rich plasma (PRP) injection is found to help in nerve regeneration. PRP is a concentrated platelet derived from autologous blood with the potential to release various growth factors (GF) to promote nerve regeneration. This study aims to know the best time for PRP injection to promote nerve regeneration. Methods This is an experimental in vivo research using male New Zealand white rabbits in the randomized control group posttest only design. Samples were divided into 5 groups (1 control group and 4 treatment groups). The control group without PRP injection and treated groups injected immediately after nerve injury, 3 days, 7 days, and 14 days afterward. Nerve regeneration was evaluated by the histology specimen sacrificed on day 21. Inflammation cells and endoneurium vacuoles were counted as mean percentage of five nerve fragments in each injured nerve sample specimen. Result Inflammation cells and vacuole cells increased significantly when PRP was administered 3 days after injury (group 2) (respectively, 14 ± 6.7 and 56.6 ± 11.6) compared to all treatment groups (p < 0.005) (control group, respectively, 6 ± 2.6 and 15.7 ± 9.5). On the other hand, significantly lower endoneurium vacuoles and inflammation cells were found on "the day 14" sample group (respectively, 5 ± 1.3 and 5.2 ± 1.6) compared to all other groups (p < 0.005). Conclusion This study found that the best time for injecting PRP for nerve regeneration is 14 days after injury.
Collapse
Affiliation(s)
- Muhammad Pandunugrahadi
- Orthopaedic and Traumatology Department, Dr Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Komang Agung Irianto
- Orthopaedic and Traumatology Department, Dr Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Oen Sindrawati
- Pathologic Anatomy Department, Faculty of Medicine, Widya Mandala Catholic University, Surabaya, Indonesia
| |
Collapse
|
13
|
Wang H, Wu T, Hua F, Sun J, Bai Y, Wang W, Liu J, Zhang M. IL-33 Promotes ST2-Dependent Fibroblast Maturation via P38 and TGF-β in a Mouse Model of Epidural Fibrosis. Tissue Eng Regen Med 2022; 19:577-588. [PMID: 35195855 PMCID: PMC9130447 DOI: 10.1007/s13770-021-00425-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Recent evidence suggests that IL-33, a novel member of the IL-1β family, is involved in organ fibrosis. However, the roles of IL-33 and its receptor ST2 in epidural fibrosis post spine operation remain elusive. METHODS A mouse model of epidural fibrosis was established after laminectomy. IL-33 in the wound tissues post laminectomy was measured with Western blotting, ELISA and immunoflurosence imaging. The fibroblast cell line NIH-3T3 and primary fibroblasts were treated with IL-33 and the mechanisms of maturation of fibroblasts into myofibroblasts were analyzed. To explore roles of IL-33 and its receptor ST2 in vivo, IL-33 knockout (KO) and ST2 KO mice were employed to construct the model of laminectomy. The epidural fibrosis was evaluated using H&E and Masson staining, western-blotting, ELISA and immunohistochemistry. RESULTS As demonstrated in western blotting and ELISA, IL-33 was increased in epidural wound tissues post laminectomy. The immunoflurosence imaging revealed that endothelial cells (CD31+) and fibroblasts (α-SAM+) were major producers of IL-33 in the epidural wound tissues. In vitro, IL-33 promoted fibroblast maturation, which was blocked by ST2 neutralization antibody, suggesting that IL-33-promoted-fibroblasts maturation was ST2 dependent. Further, IL-33/ST2 activated MAPK p38 and TGF-β pathways. Either p38 inhibitor or TGF-β inhibitor decreased fibronectin and α-SAM production from IL-33-treated fibroblasts, suggesting that p38 and TGF-β were involved with IL-33/ST2 signal pathways in the fibroblasts maturation. In vivo, IL-33 KO or ST2 KO decreased fibronectin, α-SMA and collagen deposition in the wound tissues of mice that underwent spine surgery. In addition, TGF-β1 was decreased in IL-33 KO or ST2 KO epidural wound tissues. CONCLUSION In summary, IL-33/ST2 promoted fibroblast differentiation into myofibroblasts via MAPK p38 and TGF-β in a mouse model of epidural fibrosis after laminectomy.
Collapse
Affiliation(s)
- Haoran Wang
- grid.452511.6Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Wu
- grid.452511.6Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Hua
- grid.452511.6Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinpeng Sun
- grid.452511.6Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunfeng Bai
- grid.452511.6Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weishun Wang
- grid.89957.3a0000 0000 9255 8984Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Liu
- grid.452511.6Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Yao X, Yan Z, Li X, Li Y, Ouyang Y, Fan C. Tacrolimus-Induced Neurotrophic Differentiation of Adipose-Derived Stem Cells as Novel Therapeutic Method for Peripheral Nerve Injury. Front Cell Neurosci 2021; 15:799151. [PMID: 34955758 PMCID: PMC8692949 DOI: 10.3389/fncel.2021.799151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are frequent traumatic injuries across the globe. Severe PNIs result in irreversible loss of axons and myelin sheaths and disability of motor and sensory function. Schwann cells can secrete neurotrophic factors and myelinate the injured axons to repair PNIs. However, Schwann cells are hard to harvest and expand in vitro, which limit their clinical use. Adipose-derived stem cells (ADSCs) are easily accessible and have the potential to acquire neurotrophic phenotype under the induction of an established protocol. It has been noticed that Tacrolimus/FK506 promotes peripheral nerve regeneration, despite the mechanism of its pro-neurogenic capacity remains undefined. Herein, we investigated the neurotrophic capacity of ADSCs under the stimulation of tacrolimus. ADSCs were cultured in the induction medium for 18 days to differentiate along the glial lineage and were subjected to FK506 stimulation for the last 3 days. We discovered that FK506 greatly enhanced the neurotrophic phenotype of ADSCs which potentiated the nerve regeneration in a crush injury model. This work explored the novel application of FK506 synergized with ADSCs and thus shed promising light on the treatment of severe PNIs.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Li
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing, China
| | - Yanhao Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Barman A, Mishra A, Maiti R, Sahoo J, Thakur KB, Sasidharan SK. Can platelet-rich plasma injections provide better pain relief and functional outcomes in persons with common shoulder diseases: a meta-analysis of randomized controlled trials. Clin Shoulder Elb 2021; 25:73-89. [PMID: 34823313 PMCID: PMC8907495 DOI: 10.5397/cise.2021.00353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022] Open
Abstract
Background To evaluate the efficacy of autologous platelet-rich plasma (PRP) injections in the treatment of common shoulder diseases. Methods The PubMed, Medline, and Central databases and trial registries were searched from their inception to October 2020 for randomized controlled trials of autologous PRP injections for shoulder diseases versus placebo or any control intervention. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were followed in the selection, analysis, and reporting of findings. The primary outcome was pain intensity (visual analog scale), and secondary outcomes were changes in function and quality of life (QoL). Results A total of 17 randomized controlled trials of PRP versus control were analyzed. From 8–12 weeks to ≥1 year, PRP injections were associated with better pain relief and functional outcomes than control interventions. PRP injections were also associated with greater QoL, with an effect size of 2.61 (95% confidence interval, 2.01–14.17) at medium-term follow-up. Compared with placebo and corticosteroid injections, PRP injections provided better pain relief and functional improvement. In subgroup analyses, trials in which PRP was prepared by the double centrifugation technique, the platelet concentration in the PRP was enriched ≥5 times, leucocyte-rich PRP was used, or an activating agent was used before application reported the most effective pain relief at 6–7 months. Conclusions PRP injections could provide better pain relief and functional outcomes than other treatments for persons presenting with common shoulder diseases. PRP injections have a greater capacity to improve shoulder-related QoL than other interventions.
Collapse
Affiliation(s)
- Apurba Barman
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Archana Mishra
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Jagannatha Sahoo
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Kaustav Basu Thakur
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sreeja Kamala Sasidharan
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
16
|
Stone JE, Fung TS, Machan M, Campbell C, Shan RLP, Debert CT. Ultrasound-guided platelet-rich plasma injections for post-traumatic greater occipital neuralgia: study protocol for a pilot randomized controlled trial. Pilot Feasibility Stud 2021; 7:130. [PMID: 34158124 PMCID: PMC8218409 DOI: 10.1186/s40814-021-00867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Post-traumatic headaches (PTH) are a common sequelae of traumatic brain injury (TBI) and greatly impact patient function and quality of life. Post-traumatic greater occipital neuralgia (GON) is a type of post-traumatic headache. Conventional treatment includes steroid/anesthetic injections which typically alleviate pain but have a short duration of effect. Platelet-rich plasma (PRP) is an emerging biological treatment for numerous degenerative disorders, including peripheral nerve disorders. The primary aim of this pilot study is to evaluate whether a randomized control trial of PRP for the treatment of GON in patients with post-traumatic headaches is feasible in regard to recruitment, adherence, retention, and adherence and adverse events. Exploratory aims include improvement in pain, function, and quality of life in patients with post-traumatic GON receiving PRP compared to steroid/anesthetic and normal saline injections. METHODS Thirty adults (over 18 years of age) with post-traumatic GON will be randomized into one of three groups: (1) autologous PRP injection, (2) steroid/anesthetic injection (standard care), or (3) placebo injection with normal saline. Injections will be performed to the greater occipital nerve under ultrasound guidance by a trained physician. Daily headache intensity and frequency data will be collected pre-injection and for the duration of the study period. Feasibility will be defined as greater than 30% recruitment, 70% completion of intervention, 70% retention, and less than 2 minor adverse events. Exploratory outcomes will be explored using the Headache Impact Test-6 (HIT-6, a valid and reliable 6-item questionnaire for assessment of the impact of headaches across different diagnostic groups of headaches) and the quality of life in following brain injury questionnaire (QOILIBRI). DISCUSSION This pilot study will be the first to evaluate the feasibility of PRP as a potential treatment of GON in patients with post-traumatic headache. TRIAL REGISTRATION ClinicalTrials.gov - NCT04051203 (registered August 9, 2019).
Collapse
Affiliation(s)
- Jacqueline E Stone
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Tak S Fung
- Information Technologies, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Machan
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada
| | - Christina Campbell
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada
| | - Rodney Li Pi Shan
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada
| |
Collapse
|