1
|
Zulfiqar M, Singh V, Steinbeck C, Sorokina M. Review on computer-assisted biosynthetic capacities elucidation to assess metabolic interactions and communication within microbial communities. Crit Rev Microbiol 2024; 50:1053-1092. [PMID: 38270170 DOI: 10.1080/1040841x.2024.2306465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Microbial communities thrive through interactions and communication, which are challenging to study as most microorganisms are not cultivable. To address this challenge, researchers focus on the extracellular space where communication events occur. Exometabolomics and interactome analysis provide insights into the molecules involved in communication and the dynamics of their interactions. Advances in sequencing technologies and computational methods enable the reconstruction of taxonomic and functional profiles of microbial communities using high-throughput multi-omics data. Network-based approaches, including community flux balance analysis, aim to model molecular interactions within and between communities. Despite these advances, challenges remain in computer-assisted biosynthetic capacities elucidation, requiring continued innovation and collaboration among diverse scientists. This review provides insights into the current state and future directions of computer-assisted biosynthetic capacities elucidation in studying microbial communities.
Collapse
Affiliation(s)
- Mahnoor Zulfiqar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Vinay Singh
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Data Science and Artificial Intelligence, Research and Development, Pharmaceuticals, Bayer, Berlin, Germany
| |
Collapse
|
2
|
Islam MM, Kolling GL, Glass EM, Goldberg JB, Papin JA. Model-driven characterization of functional diversity of Pseudomonas aeruginosa clinical isolates with broadly representative phenotypes. Microb Genom 2024; 10:001259. [PMID: 38836744 PMCID: PMC11261902 DOI: 10.1099/mgen.0.001259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Pseudomonas aeruginosa is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of P. aeruginosa clinical isolates. To better understand the metabolic repertoire of P. aeruginosa in infection, we deeply profiled a representative set from a library of 971 clinical P. aeruginosa isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multilocus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype-phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective P. aeruginosa pangenome metabolic repertoire. Characterizing this rich set of clinical P. aeruginosa isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Emma M. Glass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | | | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
3
|
Kuper TJ, Islam MM, Peirce-Cottler SM, Papin JA, Ford RM. Spatial transcriptome-guided multi-scale framework connects P. aeruginosa metabolic states to oxidative stress biofilm microenvironment. PLoS Comput Biol 2024; 20:e1012031. [PMID: 38669236 PMCID: PMC11051585 DOI: 10.1371/journal.pcbi.1012031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
With the generation of spatially resolved transcriptomics of microbial biofilms, computational tools can be used to integrate this data to elucidate the multi-scale mechanisms controlling heterogeneous biofilm metabolism. This work presents a Multi-scale model of Metabolism In Cellular Systems (MiMICS) which is a computational framework that couples a genome-scale metabolic network reconstruction (GENRE) with Hybrid Automata Library (HAL), an existing agent-based model and reaction-diffusion model platform. A key feature of MiMICS is the ability to incorporate multiple -omics-guided metabolic models, which can represent unique metabolic states that yield different metabolic parameter values passed to the extracellular models. We used MiMICS to simulate Pseudomonas aeruginosa regulation of denitrification and oxidative stress metabolism in hypoxic and nitric oxide (NO) biofilm microenvironments. Integration of P. aeruginosa PA14 biofilm spatial transcriptomic data into a P. aeruginosa PA14 GENRE generated four PA14 metabolic model states that were input into MiMICS. Characteristic of aerobic, denitrification, and oxidative stress metabolism, the four metabolic model states predicted different oxygen, nitrate, and NO exchange fluxes that were passed as inputs to update the agent's local metabolite concentrations in the extracellular reaction-diffusion model. Individual bacterial agents chose a PA14 metabolic model state based on a combination of stochastic rules, and agents sensing local oxygen and NO. Transcriptome-guided MiMICS predictions suggested microscale denitrification and oxidative stress metabolic heterogeneity emerged due to local variability in the NO biofilm microenvironment. MiMICS accurately predicted the biofilm's spatial relationships between denitrification, oxidative stress, and central carbon metabolism. As simulated cells responded to extracellular NO, MiMICS revealed dynamics of cell populations heterogeneously upregulating reactions in the denitrification pathway, which may function to maintain NO levels within non-toxic ranges. We demonstrated that MiMICS is a valuable computational tool to incorporate multiple -omics-guided metabolic models to mechanistically map heterogeneous microbial metabolic states to the biofilm microenvironment.
Collapse
Affiliation(s)
- Tracy J. Kuper
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mohammad Mazharul Islam
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shayn M. Peirce-Cottler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Roseanne M Ford
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
4
|
Hari A, Zarrabi A, Lobo D. mergem: merging, comparing, and translating genome-scale metabolic models using universal identifiers. NAR Genom Bioinform 2024; 6:lqae010. [PMID: 38312936 PMCID: PMC10836943 DOI: 10.1093/nargab/lqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Numerous methods exist to produce and refine genome-scale metabolic models. However, due to the use of incompatible identifier systems for metabolites and reactions, computing and visualizing the metabolic differences and similarities of such models is a current challenge. Furthermore, there is a lack of automated tools that can combine the strengths of multiple reconstruction pipelines into a curated single comprehensive model by merging different drafts, which possibly use incompatible namespaces. Here we present mergem, a novel method to compare, merge, and translate two or more metabolic models. Using a universal metabolic identifier mapping system constructed from multiple metabolic databases, mergem robustly can compare models from different pipelines, merge their common elements, and translate their identifiers to other database systems. mergem is implemented as a command line tool, a Python package, and on the web-application Fluxer, which allows simulating and visually comparing multiple models with different interactive flux graphs. The ability to merge, compare, and translate diverse genome scale metabolic models can facilitate the curation of comprehensive reconstructions and the discovery of unique and common metabolic features among different organisms.
Collapse
Affiliation(s)
- Archana Hari
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
| | - Arveen Zarrabi
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
- Greenebaum Comprehensive Cancer Center and Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Han S, Kim D, Kim Y, Yoon SH. Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12. BMC Genomics 2024; 25:63. [PMID: 38229031 DOI: 10.1186/s12864-023-09940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pseudomonas putida S12 is a gram-negative bacterium renowned for its high tolerance to organic solvents and metabolic versatility, making it attractive for various applications, including bioremediation and the production of aromatic compounds, bioplastics, biofuels, and value-added compounds. However, a metabolic model of S12 has yet to be developed. RESULTS In this study, we present a comprehensive and highly curated genome-scale metabolic network model of S12 (iSH1474), containing 1,474 genes, 1,436 unique metabolites, and 2,938 metabolic reactions. The model was constructed by leveraging existing metabolic models and conducting comparative analyses of genomes and phenomes. Approximately 2,000 different phenotypes were measured for S12 and its closely related KT2440 strain under various nutritional and environmental conditions. These phenotypic data, combined with the reported experimental data, were used to refine and validate the reconstruction. Model predictions quantitatively agreed well with in vivo flux measurements and the batch cultivation of S12, which demonstrated that iSH1474 accurately represents the metabolic capabilities of S12. Furthermore, the model was simulated to investigate the maximum theoretical metabolic capacity of S12 growing on toxic organic solvents. CONCLUSIONS iSH1474 represents a significant advancement in our understanding of the cellular metabolism of P. putida S12. The combined results of metabolic simulation and comparative genome and phenome analyses identified the genetic and metabolic determinants of the characteristic phenotypes of S12. This study could accelerate the development of this versatile organism as an efficient cell factory for various biotechnological applications.
Collapse
Affiliation(s)
- Sol Han
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dohyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngshin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Olivença DV, Davis JD, Kumbale CM, Zhao CY, Brown SP, McCarty NA, Voit EO. Mathematical models of cystic fibrosis as a systemic disease. WIREs Mech Dis 2023; 15:e1625. [PMID: 37544654 PMCID: PMC10843793 DOI: 10.1002/wsbm.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Cystic fibrosis (CF) is widely known as a disease of the lung, even though it is in truth a systemic disease, whose symptoms typically manifest in gastrointestinal dysfunction first. CF ultimately impairs not only the pancreas and intestine but also the lungs, gonads, liver, kidneys, bones, and the cardiovascular system. It is caused by one of several mutations in the gene of the epithelial ion channel protein CFTR. Intense research and improved antimicrobial treatments during the past eight decades have steadily increased the predicted life expectancy of a person with CF (pwCF) from a few weeks to over 50 years. Moreover, several drugs ameliorating the sequelae of the disease have become available in recent years, and notable treatments of the root cause of the disease have recently generated substantial improvements in health for some but not all pwCF. Yet, numerous fundamental questions remain unanswered. Complicating CF, for instance in the lung, is the fact that the associated insufficient chloride secretion typically perturbs the electrochemical balance across epithelia and, in the airways, leads to the accumulation of thick, viscous mucus and mucus plaques that cannot be cleared effectively and provide a rich breeding ground for a spectrum of bacterial and fungal communities. The subsequent infections often become chronic and respond poorly to antibiotic treatments, with outcomes sometimes only weakly correlated with the drug susceptibility of the target pathogen. Furthermore, in contrast to rapidly resolved acute infections with a single target pathogen, chronic infections commonly involve multi-species bacterial communities, called "infection microbiomes," that develop their own ecological and evolutionary dynamics. It is presently impossible to devise mathematical models of CF in its entirety, but it is feasible to design models for many of the distinct drivers of the disease. Building upon these growing yet isolated modeling efforts, we discuss in the following the feasibility of a multi-scale modeling framework, known as template-and-anchor modeling, that allows the gradual integration of refined sub-models with different granularity. The article first reviews the most important biomedical aspects of CF and subsequently describes mathematical modeling approaches that already exist or have the potential to deepen our understanding of the multitude aspects of the disease and their interrelationships. The conceptual ideas behind the approaches proposed here do not only pertain to CF but are translatable to other systemic diseases. This article is categorized under: Congenital Diseases > Computational Models.
Collapse
Affiliation(s)
- Daniel V. Olivença
- Center for Engineering Innovation, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, USA
| | - Jacob D. Davis
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Carla M. Kumbale
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Conan Y. Zhao
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Samuel P. Brown
- Department of Biological Sciences, Georgia Tech and Emory University, Atlanta, Georgia
| | - Nael A. McCarty
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
Islam MM, Kolling GL, Glass EM, Goldberg JB, Papin JA. Model-driven characterization of functional diversity of Pseudomonas aeruginosa clinical isolates with broadly representative phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561426. [PMID: 37873245 PMCID: PMC10592701 DOI: 10.1101/2023.10.08.561426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Pseudomonas aeruginosa is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of P. aeruginosa clinical isolates. To better understand the metabolic repertoire of P. aeruginosa in infection, we deeply profiled a representative set from a library of 971 clinical P. aeruginosa isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multi-locus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype-phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective P. aeruginosa pangenome metabolic repertoire. Characterizing this rich set of clinical P. aeruginosa isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Emma M. Glass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | | | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| |
Collapse
|
8
|
Potter AD, Baiocco CM, Papin JA, Criss AK. Transcriptome-guided metabolic network analysis reveals rearrangements of carbon flux distribution in Neisseria gonorrhoeae during neutrophil co-culture. mSystems 2023; 8:e0126522. [PMID: 37387581 PMCID: PMC10470122 DOI: 10.1128/msystems.01265-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
The ability of bacterial pathogens to metabolically adapt to the environmental conditions of their hosts is critical to both colonization and invasive disease. Infection with Neisseria gonorrhoeae (the gonococcus, Gc) is characterized by the influx of neutrophils [polymorphonuclear leukocytes (PMNs)], which fail to clear the bacteria and make antimicrobial products that can exacerbate tissue damage. The inability of the human host to clear Gc infection is particularly concerning in light of the emergence of strains that are resistant to all clinically recommended antibiotics. Bacterial metabolism represents a promising target for the development of new therapeutics against Gc. Here, we generated a curated genome-scale metabolic network reconstruction (GENRE) of Gc strain FA1090. This GENRE links genetic information to metabolic phenotypes and predicts Gc biomass synthesis and energy consumption. We validated this model with published data and in new results reported here. Contextualization of this model using the transcriptional profile of Gc exposed to PMNs revealed substantial rearrangements of Gc central metabolism and induction of Gc nutrient acquisition strategies for alternate carbon source use. These features enhanced the growth of Gc in the presence of neutrophils. From these results, we conclude that the metabolic interplay between Gc and PMNs helps define infection outcomes. The use of transcriptional profiling and metabolic modeling to reveal new mechanisms by which Gc persists in the presence of PMNs uncovers unique aspects of metabolism in this fastidious bacterium, which could be targeted to block infection and thereby reduce the burden of gonorrhea in the human population. IMPORTANCE The World Health Organization designated Gc as a high-priority pathogen for research and development of new antimicrobials. Bacterial metabolism is a promising target for new antimicrobials, as metabolic enzymes are widely conserved among bacterial strains and are critical for nutrient acquisition and survival within the human host. Here we used genome-scale metabolic modeling to characterize the core metabolic pathways of this fastidious bacterium and to uncover the pathways used by Gc during culture with primary human immune cells. These analyses revealed that Gc relies on different metabolic pathways during co-culture with human neutrophils than in rich media. Conditionally essential genes emerging from these analyses were validated experimentally. These results show that metabolic adaptation in the context of innate immunity is important to Gc pathogenesis. Identifying the metabolic pathways used by Gc during infection can highlight new therapeutic targets for drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Aimee D. Potter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher M. Baiocco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Alonso-Vásquez T, Fondi M, Perrin E. Understanding Antimicrobial Resistance Using Genome-Scale Metabolic Modeling. Antibiotics (Basel) 2023; 12:antibiotics12050896. [PMID: 37237798 DOI: 10.3390/antibiotics12050896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The urgent necessity to fight antimicrobial resistance is universally recognized. In the search of new targets and strategies to face this global challenge, a promising approach resides in the study of the cellular response to antimicrobial exposure and on the impact of global cellular reprogramming on antimicrobial drugs' efficacy. The metabolic state of microbial cells has been shown to undergo several antimicrobial-induced modifications and, at the same time, to be a good predictor of the outcome of an antimicrobial treatment. Metabolism is a promising reservoir of potential drug targets/adjuvants that has not been fully exploited to date. One of the main problems in unraveling the metabolic response of cells to the environment resides in the complexity of such metabolic networks. To solve this problem, modeling approaches have been developed, and they are progressively gaining in popularity due to the huge availability of genomic information and the ease at which a genome sequence can be converted into models to run basic phenotype predictions. Here, we review the use of computational modeling to study the relationship between microbial metabolism and antimicrobials and the recent advances in the application of genome-scale metabolic modeling to the study of microbial responses to antimicrobial exposure.
Collapse
Affiliation(s)
- Tania Alonso-Vásquez
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto F.no, 50019 Florence, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto F.no, 50019 Florence, Italy
| | - Elena Perrin
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto F.no, 50019 Florence, Italy
| |
Collapse
|
10
|
Fajiculay E, Hsu CP. Localization of Noise in Biochemical Networks. ACS OMEGA 2023; 8:3043-3056. [PMID: 36713703 PMCID: PMC9878546 DOI: 10.1021/acsomega.2c06113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Noise, or uncertainty in biochemical networks, has become an important aspect of many biological problems. Noise can arise and propagate from external factors and probabilistic chemical reactions occurring in small cellular compartments. For species survival, it is important to regulate such uncertainties in executing vital cell functions. Regulated noise can improve adaptability, whereas uncontrolled noise can cause diseases. Simulation can provide a detailed analysis of uncertainties, but parameters such as rate constants and initial conditions are usually unknown. A general understanding of noise dynamics from the perspective of network structure is highly desirable. In this study, we extended the previously developed law of localization for characterizing noise in terms of (co)variances and developed noise localization theory. With linear noise approximation, we can expand a biochemical network into an extended set of differential equations representing a fictitious network for pseudo-components consisting of variances and covariances, together with chemical species. Through localization analysis, perturbation responses at the steady state of pseudo-components can be summarized into a sensitivity matrix that only requires knowledge of network topology. Our work allows identification of buffering structures at the level of species, variances, and covariances and can provide insights into noise flow under non-steady-state conditions in the form of a pseudo-chemical reaction. We tested noise localization in various systems, and here we discuss its implications and potential applications. Results show that this theory is potentially applicable in discriminating models, scanning network topologies with interesting noise behavior, and designing and perturbing networks with the desired response.
Collapse
Affiliation(s)
- Erickson Fajiculay
- Institute
of Chemistry, Academia Sinica, Taipei115201, Taiwan
- Bioinformatics
Program, Institute of Information Science, Taiwan International Graduate
Program, Academia Sinica, Taipei115201, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu300044, Taiwan
| | - Chao-Ping Hsu
- Institute
of Chemistry, Academia Sinica, Taipei115201, Taiwan
- Bioinformatics
Program, Institute of Information Science, Taiwan International Graduate
Program, Academia Sinica, Taipei115201, Taiwan
- Physics
Division, National Center for Theoretical
Sciences, Taipei106319, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University, Taipei106319, Taiwan
| |
Collapse
|
11
|
Niarakis A, Thakar J, Barberis M, Rodríguez Martínez M, Helikar T, Birtwistle M, Chaouiya C, Calzone L, Dräger A. Computational modelling in health and disease: highlights of the 6th annual SysMod meeting. Bioinformatics 2022. [DOI: 10.1093/bioinformatics/btac609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Summary
The Community of Special Interest (COSI) in Computational Modelling of Biological Systems (SysMod) brings together interdisciplinary scientists interested in combining data-driven computational modelling, multi-scale mechanistic frameworks, large-scale -omics data and bioinformatics. SysMod’s main activity is an annual meeting at the Intelligent Systems for Molecular Biology (ISMB) conference, a meeting for computer scientists, biologists, mathematicians, engineers and computational and systems biologists. The 2021 SysMod meeting was conducted virtually due to the ongoing COVID-19 pandemic (coronavirus disease 2019). During the 2-day meeting, the development of computational tools, approaches and predictive models was discussed, along with their application to biological systems, emphasizing disease mechanisms. This report summarizes the meeting.
Availability and implementation
All resources and further information are freely accessible at https://sysmod.info.
Collapse
Affiliation(s)
- Anna Niarakis
- GenHotel, Department of Biology, Univ Évry, University of Paris-Saclay, Genopole , 91025 Évry, France
- Lifeware Group, Inria Saclay-île de France , Palaiseau 91120, France
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry , Rochester, NY, USA
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey , GU2 7XH Guildford, Surrey, UK
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey , GU2 7XH Guildford, Surrey, UK
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences University of Amsterdam , 1098 XH Amsterdam, The Netherlands
| | | | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, NE68588-0664, USA
| | - Marc Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University , Clemson, SC 29634, USA
- Department of Bioengineering, Clemson University , Clemson, SC 29634, USA
| | | | - Laurence Calzone
- Institut Curie, PSL Research University , Paris, France
- INSERM, U900 , Paris, France
- MINES ParisTech , Paris, France
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen , 72076 Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen , 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen , Tübingen 72076, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections,’ Eberhard Karl University of Tübingen , Tübingen 72076, Germany
| |
Collapse
|
12
|
Adolf LA, Heilbronner S. Nutritional Interactions between Bacterial Species Colonising the Human Nasal Cavity: Current Knowledge and Future Prospects. Metabolites 2022; 12:489. [PMID: 35736422 PMCID: PMC9229137 DOI: 10.3390/metabo12060489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
The human nasal microbiome can be a reservoir for several pathogens, including Staphylococcus aureus. However, certain harmless nasal commensals can interfere with pathogen colonisation, an ability that could be exploited to prevent infection. Although attractive as a prophylactic strategy, manipulation of nasal microbiomes to prevent pathogen colonisation requires a better understanding of the molecular mechanisms of interaction that occur between nasal commensals as well as between commensals and pathogens. Our knowledge concerning the mechanisms of pathogen exclusion and how stable community structures are established is patchy and incomplete. Nutrients are scarce in nasal cavities, which makes competitive or mutualistic traits in nutrient acquisition very likely. In this review, we focus on nutritional interactions that have been shown to or might occur between nasal microbiome members. We summarise concepts of nutrient release from complex host molecules and host cells as well as of intracommunity exchange of energy-rich fermentation products and siderophores. Finally, we discuss the potential of genome-based metabolic models to predict complex nutritional interactions between members of the nasal microbiome.
Collapse
Affiliation(s)
- Lea A. Adolf
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
| | - Simon Heilbronner
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| |
Collapse
|